Known 269-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 269-digit prime factors of googolduplex − 1
This is a list of known
269-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 106825137 1397977359 0907397553 2572017984 9858656282 2438087064 7524896826 3425947541 2553912258 7982428403 0010465608 7111683337 9979027540 6849104911 0889434814 4531250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 106910588 4036878258 4562145868 6059275152 6078752042 0194791847 7499686415 9456394852 1434681993 0142373777 9259681701 6601562500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 118234311 2304806709 2895507812 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 167982846 9122355144 1729416284 5968537531 6609537254 8101341675 7506208303 5494598972 7687841830 8433875772 7448708177 4895708374 0116624694 7992188864 8732419824 2276906967 1630859375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=371)
- 452002832 6526129943 9715821438 5995347305 7612919716 8892733795 9945651491 0116311511 9561553001 4038085937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 542101086 2427522170 0372640043 4970855712 8906250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 568434188 6080801486 9689941406 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 587269481 9325893581 5842975047 4432388930 1405276183 4235520133 2780132246 4782259865 1603160350 6635325355 6190966674 9680532726 3538154325 9541289703 0656305268 8816428614 2631048792 3152953712 9269380457 6856564381 1598420143 1274414062 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)