Known 166-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 166-digit prime factors of googolduplex − 1
This is a list of known
166-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 102920 3633602579 3570178425 1196941442 0644756166 7332423733 5859012203 9785231968 5714594298 8652781068 9208834039 7305944729 0795388499 5906118352 8960000000 0000000000 0000000001 (Phil Carmody, k=177)
- 154814 7342014209 4255640187 2319112740 2399115979 1861115504 8346674150 9329787820 1358966993 8200576000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 159309 1911132452 2770288803 9776771180 5591104555 1926187860 7388585338 6162901513 0581609430 8987472018 2685940983 4469261113 5542392730 7128906250 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 188079 0961315660 0127499784 5955559308 4509864890 8353400344 1400273004 5467615127 5634765625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 218097 6003435231 6472506777 5719560921 3113200654 1657197375 3694099360 2885291045 4983726751 2657490442 5069689750 6713867187 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
- 234335 4190569586 1740964366 2025157803 4347266832 2840644985 5838922525 6745967191 4490770708 2922245827 6533885357 7313793508 0967508838 5120034217 8344726562 5000000000 0000000001 (Phil Carmody, k=241)
- 255240 8610060233 9033208075 2205825408 3054595616 0770412069 3600486153 4837412397 3252395481 0236886015 5975705005 8277472182 0555896556 4705431461 3342285156 2500000000 0000000001 (Phil Carmody, k=21)
- 283341 9889721787 1282176000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 287733 1348495215 1202135045 1441018219 4947617193 9840000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 319667 0515523576 0449347555 6330820229 7086564498 0889304584 7977672665 6380660551 4399950031 9344953701 5778467662 7774683203 8184493872 7095591204 1536411402 2400000000 0000000001 (Phil Carmody, k=1)
- 322302 2501431321 2611840024 2516871411 5507999873 4172818897 1070059408 7612524605 1995164715 4175129055 2913561840 6181983002 6284842877 3365866964 2700035062 8267851933 2864000001 (Phil Carmody, k=939)
- 337418 5345907397 2871079038 8076448639 4152272838 7264374748 2556667945 8878185503 6159027392 8051457791 8142862440 6829751406 7134240619 9541620724 7667563863 8564887289 1351040001 (Phil Carmody, k=3)
- 397046 6940254532 8393827617 2193582169 7115898132 3242187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 569141 2770192565 6374593610 5514702804 6803926286 2855650036 6741916915 6946148062 1342720000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 619812 3216749697 1403154877 9756500374 3627891160 0462824645 6871214833 0540038699 2419074192 0904383321 0762489138 7231969019 9219621717 9298400878 9062500000 0000000000 0000000001 (Phil Carmody, k=249)
- 664475 4324959964 9743587373 2248821903 2088647230 5712929260 8280019969 1998519545 2895975089 0186122379 2173665629 7442853414 5024000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=527)