Factores primos de gúgolplex - 1 con 60 dígitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolplex − 1 con 60 digitos

Esta es una lista de factores primos de 60 dígitos de gúgolplex − 1, es decir, 1010^100 − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 100 y 0 ≤ m ≤ 100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 1455191522 8366851806 6406250000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  2. 1600000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 1831054687 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 2381263667 2000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=45419)
  5. 2728484105 3187847137 4511718750 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 2831155200 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  7. 3078632557 7728000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  8. 3377699720 5278720000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  9. 3552713678 8005009293 5562133789 0625000000 0000000000 0000000001 (Phil Carmody, k=1)
  10. 3666400516 5221169590 9500122070 3125000000 0000000000 0000000001 (Phil Carmody, k=129)
  11. 6087548942 9539419848 7040000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6758537)
  12. 6273074729 6034695675 9040000000 0000000000 0000000000 0000000001 (Dario Alpern, k=217641)
  13. 6821210263 2969617843 6279296875 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  14. 7063150405 8837890625 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=237)
  15. 7389644451 9050419330 5969238281 2500000000 0000000000 0000000001 (Phil Carmody, k=13)
  16. 8940696716 3085937500 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  17. 8964573197 2658876385 2959118594 2990705370 9030151367 1875000001 (Dario Alpern, k=21167)