Known 92-digit prime factors of Googolplex - 10

  1. Alpertron
  2. Number Theory
  3. Known 92-digit prime factors of Googolplex − 10

This is a list of known 92-digit prime factors of googolplex − 10, i.e., 1010^100 − 10.

These numbers have the form 1 + 2ki piei, where pi is a prime factor of 10100 − 1 and ei is zero or one.

The list of prime factors of 10100 − 1 is: 3, 3, 11, 41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801, 18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 12 7222537882 5817314366 5739703441 9218874211 9026638504 5942692289 3303712263 4475664574 0161953363 (Phil Carmody, k=9)
  2. 13 6135838019 6367780915 7616345831 4868305033 4967804209 8831966203 8600023307 7351458392 0099499191 (Phil Carmody, k=5)
  3. 16 6315433003 6892430295 5160054517 6334661371 2132166071 4183266948 9024596350 3027888462 8466827427 (Phil Carmody, k=1)
  4. 17 6857408093 1751218799 4031831147 7000049933 6605166033 9747757958 4853947252 2573334903 9605116119 (Phil Carmody, k=51)
  5. 21 5575528890 5908289460 7625140464 0968083561 6753797795 3050778886 4311643814 2674474085 8335515053 (Phil Carmody, k=2)
  6. 22 0655545216 6435343643 6076092828 5416267758 0000000022 0655545216 6435343643 6076092828 5416267759 (Phil Carmody, k=53)
  7. 22 5422351452 3892306772 9085919562 1599422190 0000000022 5422351452 3892306772 9085919562 1599422191 (Phil Carmody, k=155)
  8. 27 9230746351 6472794059 4062198248 0575758787 3465346562 5765399816 9938140594 0596851713 4041105323 (Phil Carmody, k=361)
  9. 28 3984063773 4183266960 6693227120 0318725128 0000000028 3984063773 4183266960 6693227120 0318725129 (Phil Carmody, k=36)
  10. 48 2459169998 0000000048 2459169998 0000000048 2459169998 0000000048 2459169998 0000000048 2459169999 (Phil Carmody, k=949)
  11. 61 9545154541 0330358456 4220636995 1239661760 0060083749 9485070853 0390442144 4160553307 1299745449 (Phil Carmody, k=76)
  12. 72 9130893397 3926018587 8148509896 7480957848 0000000072 9130893397 3926018587 8148509896 7480957849 (Phil Carmody, k=28)