Electronics
Mathematics
Programs
Contact
ESP
Known 89-digit prime factors of Googolplex - 10
Alpertron
Number Theory
Known 89-digit prime factors of Googolplex − 10
This is a list of known
89-digit prime factors of googolplex − 10, i.e., 1010^100 − 10.
These numbers have the form 1 + 2k ∏i p i e i ,
where p i is a prime factor of 10100 − 1
and e i is zero or one.
The list of prime factors of 10100 − 1 is: 3, 3, 11,
41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801,
18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.
In the list you can see the prime factors, their discoverer and their corresponding value of k .
108315192 7158360453 4913995353 2976112971 5643564356 4464750836 2801924809 9270430996 8619677329 (Phil Carmody, k=8)
127452036 7329241734 3227828199 8689368441 9054397196 1073054840 6383638930 4173431003 7743765639 (Phil Carmody, k=1)
128922955 1065331113 6312839787 0730084510 8891502764 8348580463 9162557801 3963644987 9611817769 (Dario Alpern, k=1076)
136876009 4619277644 3590176183 4032166360 8287382905 4561927173 3360729533 6786628821 4624835369 (Dario Alpern, k=1116)
148380470 8156522842 5498233630 8844690571 3550856058 9822429155 5297169420 8097524824 0426527813 (Phil Carmody, k=714)
151145414 5386266451 4884677302 5271792482 6693133068 6541987654 1306866617 1808455766 1421340587 (Phil Carmody, k=127)
154651166 1992031872 5254252759 8247011952 2067001763 8087649402 4059033636 3187250996 0314013717 (Phil Carmody, k=26)
163782032 3817355870 9505667100 9573764454 3194289612 5020273604 9013276071 9455584739 5989963853 (Phil Carmody, k=14)
175819597 7219756086 1817798944 4814728283 7426415364 2749404233 4646171450 4391383580 2241143649 (Dario Alpern, k=1296)
176791509 8869569557 9285292200 3912746876 1095910992 0919119482 2226341434 1810618791 7183164117 (Phil Carmody, k=2)
189025344 1004778741 9918271286 0742509736 7827338831 1383333407 3754831005 5000701011 2184430689 (Phil Carmody, k=16)
205745157 9236695484 6327409354 7693546069 8683549358 6002986468 3843939956 4385345162 8257929359 (Phil Carmody, k=323)
206285565 1629094581 7449387219 4766319356 6715695246 3559640750 6007557502 4950094362 4526223519 (Phil Carmody, k=29)
229134268 0876494023 9272958969 2828685258 9870568531 0358565737 0747062554 9402390438 2699253791 (Phil Carmody, k=115)
286730838 5013863399 6144996554 9719237429 0160364284 2714655025 6839234996 7426573431 1694344041 (Phil Carmody, k=180)
364941547 0324846465 1623473614 8429255276 8817996495 1546945051 9142842960 2805477119 7247251773 (Phil Carmody, k=182)
398468300 2940005865 7273336467 7974831939 7119457780 3279010520 0059463646 0153878687 5094289721 (Phil Carmody, k=620)
450680667 4484786717 2660648120 1682086187 9801980198 0648700469 4286766915 2858667922 1484066387 (Phil Carmody, k=327)
458157295 4160850165 0165011920 0772108556 5148514851 5309642443 9309365016 5016497068 5920623409 (Phil Carmody, k=8)
477758402 4428136923 0175295412 3950901172 3174740838 2696982435 8746603915 2999445425 9223839667 (Phil Carmody, k=207)
501511317 3926762311 4034216874 1456383165 3279132791 2777621473 9352370479 9244915917 1822749627 (Phil Carmody, k=23)
514690048 1286873886 4106058094 0601861017 6717422180 3797267867 8004296066 7388635913 7319283199 (Phil Carmody, k=149)
533086314 1293700752 0645583390 8461411254 7670812890 6181551277 7373128074 8618854997 8332907613 (Phil Carmody, k=14)
534717697 7211155378 5395275466 6454183266 9857426861 0677290836 7068582239 5537848605 6311610129 (Phil Carmody, k=8)
545415217 7713848355 3231726593 6220362390 0314137867 9768722650 2600289512 7082411274 4093775479 (Phil Carmody, k=149)
579236373 3004065230 6546247260 6421195271 3069306930 7509929442 6073372161 3476940329 9490502203 (Phil Carmody, k=7)
608465113 9226876059 9455036538 2673071377 6073101820 4535363293 5299977880 3381934717 8746173199 (Phil Carmody, k=11)
614665311 4315847037 2865749253 4650990195 7569471764 3045193547 1885318801 5296277489 2220461961 (Phil Carmody, k=20)
645785010 4699035194 0023153082 0296082184 3542546855 7103238154 8241582049 6480606226 3838629041 (Phil Carmody, k=40)
717131474 1752988047 8804780876 5657370518 0000000000 0717131474 1752988047 8804780876 5657370519 (Phil Carmody, k=1)
854047781 0470684738 9627923801 5150189445 8101811540 2752236240 8572496279 1526112261 3252000987 (Phil Carmody, k=251)
864733872 6272589100 2681745837 0941302430 0000000000 0864733872 6272589100 2681745837 0941302431 (Phil Carmody, k=5)
If you have any comment please fill the form .
Perl script written by Dario Alejandro Alpern. Last updated on October 5th, 2022.