Known 87-digit prime factors of Googolplex - 10

  1. Alpertron
  2. Number Theory
  3. Known 87-digit prime factors of Googolplex − 10

This is a list of known 87-digit prime factors of googolplex − 10, i.e., 1010^100 − 10.

These numbers have the form 1 + 2ki piei, where pi is a prime factor of 10100 − 1 and ei is zero or one.

The list of prime factors of 10100 − 1 is: 3, 3, 11, 41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801, 18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1034718 4435768183 3191392702 1590369358 9894965592 1766440833 8925332867 0249389623 0854397031 (Phil Carmody, k=85)
  2. 1189255 0196476700 1290201402 9826178664 8960214293 1040974961 9156690993 2329987109 8786392959 (Phil Carmody, k=49)
  3. 1264956 7063646130 1431822079 4899151903 1415450658 0590606232 2259067171 3904160310 1349959711 (Dario Alpern, k=2795)
  4. 1276828 0298188480 2259928808 7299310110 1157371524 7515308441 3293632582 8047200467 9521722151 (Dario Alpern, k=2275)
  5. 1277803 0622802790 0279002777 2498696562 0000000000 0001277803 0622802790 0279002777 2498696563 (Phil Carmody, k=9)
  6. 1488047 3321215166 2509485430 0299180590 8712871287 1288616760 2034086453 3796614142 9012051879 (Phil Carmody, k=1)
  7. 1690418 2373466666 6666666649 7624842932 0000000000 0001690418 2373466666 6666666649 7624842933 (Phil Carmody, k=2)
  8. 1790014 8085773371 6384918254 4837476162 0737192628 0735402613 2651419256 4352274373 5899716467 (Dario Alpern, k=2247)
  9. 1882777 3376447683 8169776923 2130246175 0193174822 3825113671 9982993331 9759101560 0743081237 (Phil Carmody, k=202)
  10. 1967901 3649808760 3804257045 3022859800 7463647473 7676155531 4701647694 2761301554 1138605533 (Phil Carmody, k=2)
  11. 2074071 0654835730 7323411948 4444485189 1750684709 4505861001 0221030997 4113849682 8801948489 (Phil Carmody, k=156)
  12. 2136756 0000000000 0002136756 0000000000 0002136756 0000000000 0002136756 0000000000 0002136757 (Phil Carmody, k=86)
  13. 2290058 8431757404 9157659396 9513841607 0002915168 5936880089 8304225492 7618164138 1763973961 (Phil Carmody, k=20)
  14. 2366770 5418326693 2273283105 2031872509 9603960396 0398406374 5022287089 2669322709 1635832907 (Phil Carmody, k=1)
  15. 2493165 5076241718 0879809370 8950824033 5643564356 4358928809 0719806074 5236245014 4594388391 (Dario Alpern, k=2795)
  16. 2501652 7034878337 5153901833 0064547092 6732673267 3269828385 3767551604 8421228565 6797220361 (Phil Carmody, k=20)
  17. 2526446 9054182863 2411553573 4948301282 0000000000 0002526446 9054182863 2411553573 4948301283 (Phil Carmody, k=1)
  18. 3154721 0726024456 9130970359 1324838490 0660326975 9342827745 1386351432 8470643383 1985165467 (Phil Carmody, k=1)
  19. 3195404 1966026105 9642555994 3522267399 2317209759 3850391160 0109606157 0424291632 4225062449 (Phil Carmody, k=8)
  20. 3429334 4687358810 7054914667 7545719124 3366336633 6637092700 8053695444 3688578034 0912055759 (Phil Carmody, k=511)
  21. 3480375 0366084158 9636701025 5599495524 8788477831 1215002543 9154561990 0848223194 4387973357 (Phil Carmody, k=2)
  22. 3610041 0751073165 1246643783 0641615997 4440483426 8097534640 9319978466 0014271241 4493779329 (Phil Carmody, k=64)
  23. 3685630 8047808764 9406076069 0517928286 8529582045 1474103585 6577390810 0876494023 9047510333 (Phil Carmody, k=354)
  24. 3738143 0778001027 9897201065 3711508808 0000000000 0003738143 0778001027 9897201065 3711508809 (Phil Carmody, k=4)
  25. 3980047 0438247011 9525892397 6414342629 4824697178 5179282868 5262944190 4701195219 1239039809 (Phil Carmody, k=544)
  26. 4865001 5268092879 9835844898 2972138189 8028805422 1976059579 3296898302 1807039476 1000943613 (Dario Alpern, k=1054)
  27. 4920623 3839596039 6039603911 1898057643 6435643564 3569277059 0275239603 9603960346 8333701209 (Phil Carmody, k=196)
  28. 4992264 9870992092 3686319550 6858832112 2525368123 6794776967 3842259618 7197789416 3914407721 (Phil Carmody, k=860)
  29. 5533932 8075294990 1437426072 7514006478 8292682926 8287148994 0217387936 6855256854 0778676449 (Phil Carmody, k=16)
  30. 5659291 4886298577 2152147054 5113370900 9018381685 0987277606 3904680262 3133765369 4131752587 (Phil Carmody, k=31)
  31. 6321600 6638965568 1272560454 2987521128 1895495217 0778502462 1877000842 7742317063 3142779079 (Phil Carmody, k=11)
  32. 6501276 0000000000 0006501276 0000000000 0006501276 0000000000 0006501276 0000000000 0006501277 (Phil Carmody, k=102)
  33. 6709158 0000000000 0006709158 0000000000 0006709158 0000000000 0006709158 0000000000 0006709159 (Phil Carmody, k=1)
  34. 8032464 6027548205 1405292078 3301619319 9999999999 9991967535 3972451794 8594707921 6698380681 (Phil Carmody, k=60)
  35. 8257603 0950467374 7345253893 5653046370 5981361197 4026896405 6931828572 1363892696 1634407569 (Phil Carmody, k=424)
  36. 8494097 3896546890 3330768757 4522685855 8019801980 1988692117 1916348870 5310966777 2542487837 (Phil Carmody, k=102)
  37. 8765700 9877108546 3304873359 5083407317 4159506320 5849259380 4036614866 9145367038 9242913639 (Phil Carmody, k=1)
  38. 9003605 7576829888 7259243942 7081773784 5148514851 4860488754 2725344740 2110729091 2230288637 (Phil Carmody, k=282)
  39. 9386220 5074280786 3943039872 8623713466 4912170124 1862827317 4332135674 5602806987 6580758053 (Dario Alpern, k=1466)
  40. 9554728 6961456446 6547712508 7354189445 9691186502 7213760981 5039192258 0389412314 0631173191 (Phil Carmody, k=5)
  41. 9642324 7504684082 0667270155 8872655170 8975257985 6920476084 6210229417 3859363794 9611610933 (Phil Carmody, k=2)
  42. 9969945 5080018571 6151352722 5455096330 8425306677 1584663268 3505325248 7726046045 3880403009 (Phil Carmody, k=416)