Electronics
Mathematics
Programs
Contact
ESP
Known 85-digit prime factors of Googolplex - 10
Alpertron
Number Theory
Known 85-digit prime factors of Googolplex − 10
This is a list of known
85-digit prime factors of googolplex − 10, i.e., 1010^100 − 10.
These numbers have the form 1 + 2k ∏i p i e i ,
where p i is a prime factor of 10100 − 1
and e i is zero or one.
The list of prime factors of 10100 − 1 is: 3, 3, 11,
41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801,
18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.
In the list you can see the prime factors, their discoverer and their corresponding value of k .
10027 2462369740 5199742255 2728536850 8536890669 1463119358 0999260409 6662851586 1265427521 (Dario Alpern, k=1120)
10072 2811389825 8459729909 1235959170 9701897018 9701886946 6890507193 1242167109 8465937849 (Dario Alpern, k=2804)
10308 6422332842 4571374426 5124668619 1287128712 8712881595 7709461555 3284245713 6411797333 (Phil Carmody, k=2)
10570 9828962302 8374948375 7785370061 9320457931 3986485968 4806064882 4117134992 7235110369 (Phil Carmody, k=16)
10649 0214386839 8757413160 2307488983 7441400734 2558609914 7655787574 1316012425 9748889719 (Phil Carmody, k=881)
11443 2180784325 9477315349 7123986127 1489848303 4641091474 5163930572 5353031061 3167787321 (Phil Carmody, k=140)
11866 4273501956 1536362031 4265195215 8217821782 1782190084 2491323738 3318540249 2483016999 (Phil Carmody, k=21)
12036 1843712218 0392928087 3035148185 0419512892 9580499143 2263225110 9973415194 3454661079 (Phil Carmody, k=133)
12091 7153728359 2901122781 7217864040 0000000000 0000012091 7153728359 2901122781 7217864041 (Phil Carmody, k=780)
12458 0099908367 9444770547 2464265454 9315419677 0684592780 9415328045 0129350870 1779685133 (Phil Carmody, k=2)
13333 5358358098 7063188051 3177284100 6022658582 9943145669 1618450335 0508258790 6308643039 (Dario Alpern, k=2131)
13349 7407425551 2954661817 9138425672 4053204220 2493624345 4782733916 6623313245 7092052427 (Dario Alpern, k=2337)
14356 5661290226 2739210477 9874100114 4960619920 1640948487 0833886652 6525533204 3682992111 (Dario Alpern, k=2135)
14451 7138319304 1491551452 5402549059 0830994503 8813784594 0113870470 9812318150 6355504929 (Phil Carmody, k=368)
14475 6390374502 2081234571 2369250380 7954942513 4357179913 8181026903 9984430857 4884017191 (Phil Carmody, k=65)
15536 2948207171 3147425894 8605577689 2430294420 7569721115 5378501592 0717131474 1035872111 (Phil Carmody, k=195)
15847 7858249288 1255533805 3160318804 7682812723 2178103941 5261366166 0163293618 3289014293 (Phil Carmody, k=494)
16025 8414023624 5539267284 6972407764 7901722677 2098293348 6315746301 7637544607 4874130443 (Phil Carmody, k=19)
16105 3919391501 1166926181 9845791410 1832914593 7671602268 6837312999 9270285527 0869900827 (Phil Carmody, k=13)
17385 5712052043 0714556278 3023057269 2673857059 5701728120 2141087885 0246153370 9093030867 (Phil Carmody, k=1)
17760 5641640929 4619383771 9108863879 7357748292 2642269468 2999389221 7261635479 6466612173 (Phil Carmody, k=14)
17817 1071014489 8551014490 0332725200 0000000000 0000017817 1071014489 8551014490 0332725201 (Phil Carmody, k=200)
18451 5348263922 6738439898 5362108555 5803445354 4196573097 1151709277 0934994544 1165553911 (Phil Carmody, k=245)
21408 2190278998 6526338255 7787055376 3168316831 6831704576 5358595830 3358021424 0955372209 (Phil Carmody, k=8)
22512 8668720287 3008712020 0593534464 5435848481 4564174031 4104568768 7572863538 6029382947 (Phil Carmody, k=27)
23301 7839370861 5691602767 0230234390 3316407402 4320655752 7608237528 8721222837 4495212843 (Phil Carmody, k=47)
24310 6905485513 2973885103 7432884434 0167052128 9163266186 8656537908 4322448355 6026585039 (Phil Carmody, k=1)
25479 2966865921 4596007385 5681005948 6845523863 3154501615 9812389784 7750483522 2526529813 (Phil Carmody, k=62)
27385 9132400814 4104668613 3412798641 9971381507 7952141327 4449949607 2758102000 4729415671 (Phil Carmody, k=35)
27713 0179531122 6102754789 1065373288 2980344180 2980316467 2800813057 6877589391 1914970893 (Phil Carmody, k=922)
28577 7500315522 4109644564 7998402079 3510491238 6489537339 1010806761 0599153326 1508893319 (Phil Carmody, k=1)
28911 1291313443 3459184366 5578506182 2574257425 7425771485 3865570869 0884926940 8152763609 (Phil Carmody, k=4)
39086 7814490444 2893582787 0060056464 6678400282 4374730524 1920776339 7134660960 6901040889 (Dario Alpern, k=1604)
39257 2111553784 8605616946 4541832669 3227130890 6772908366 5338684675 5378486055 7768963561 (Phil Carmody, k=20)
39311 2291507835 6538511923 2029316595 1194577802 8805461508 3486085638 5343934120 3223894399 (Phil Carmody, k=1)
43346 5945861489 7855595864 0743720948 4004574419 5995468926 9950435909 3851021444 4748295369 (Phil Carmody, k=44)
45597 0483156805 5658810182 6386675391 2454585103 6199559426 8903699214 3887408387 1167511307 (Phil Carmody, k=1)
46485 9086752966 0384871343 0798271467 7372921660 3193504752 7120062972 6415886389 3044656133 (Phil Carmody, k=54)
48108 1912350597 6095665638 0717131474 1035904681 8964143426 2948255279 5059760956 1753036157 (Phil Carmody, k=162)
50286 7809927850 4633632090 7675282549 6055961734 1893021862 8094639089 0901793219 8901682877 (Dario Alpern, k=1422)
51598 0665447934 0812174070 3649847406 7513141754 3032966633 6921985690 6358547820 8459456683 (Phil Carmody, k=29)
52033 5368005741 4373391408 1623864470 0000000000 0000052033 5368005741 4373391408 1623864471 (Phil Carmody, k=65)
55056 6411912221 5242348571 9874945908 5372009921 9119817318 2203382718 1354673353 3250483227 (Dario Alpern, k=2007)
56373 8486055776 8924359162 6932270916 3346669919 6653386454 1832725696 5577689243 0278940837 (Phil Carmody, k=222)
56384 3227728604 8391697982 3722414161 7116776799 7116720415 3889048194 8725078817 3394362639 (Phil Carmody, k=133)
62516 7553552657 9388636640 1694737708 0572702617 2609503291 4512837861 1800742927 9184296951 (Phil Carmody, k=25)
65155 5633007106 1496192894 5019363436 2206807855 7793257299 7839814961 9289385038 7226171293 (Phil Carmody, k=62)
68144 7130190226 9442668043 1544861528 8465362469 1534705675 5595552696 0977305574 0010223999 (Phil Carmody, k=1)
68986 7008033674 4854654949 8867841231 3796656059 0535327749 7341144256 9649403405 0068081809 (Dario Alpern, k=2168)
70229 0971582114 1788582114 8811491830 0000000000 0000070229 0971582114 1788582114 8811491831 (Phil Carmody, k=215)
83082 4743748150 0138075327 6499779651 2403275910 7596807171 7147024060 7734799416 8903055563 (Dario Alpern, k=1839)
87261 1376897211 1553784861 4303803012 0000000000 0000087261 1376897211 1553784861 4303803013 (Phil Carmody, k=2)
88151 3280701795 5380761077 4197066826 3078300937 5906898045 2267718663 9649731095 2307528933 (Phil Carmody, k=706)
92559 0150900294 8584375543 3087801803 8613861386 1386231172 8764761680 9970514157 1701663191 (Phil Carmody, k=105)
94009 6061199951 9169655473 1490792112 4248151763 8463064683 5611224233 2320626561 9306557831 (Phil Carmody, k=5)
94019 7592589875 4110075200 1374491954 9713825220 9713731201 2121235345 5603750020 8339333267 (Phil Carmody, k=1)
99872 6852738170 7244541891 3549458926 4532932448 4532832575 7680194277 7288390557 0983473523 (Dario Alpern, k=1741)
If you have any comment please fill the form .
Perl script written by Dario Alejandro Alpern. Last updated on October 5th, 2022.