Electronics
Mathematics
Programs
Contact
ESP
Known 83-digit prime factors of Googolplex - 10
Alpertron
Number Theory
Known 83-digit prime factors of Googolplex − 10
This is a list of known
83-digit prime factors of googolplex − 10, i.e., 1010^100 − 10.
These numbers have the form 1 + 2k ∏i p i e i ,
where p i is a prime factor of 10100 − 1
and e i is zero or one.
The list of prime factors of 10100 − 1 is: 3, 3, 11,
41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801,
18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.
In the list you can see the prime factors, their discoverer and their corresponding value of k .
101 1739543008 0392246373 9762388317 3638801700 0164242105 6728005474 7924836854 4504011879 (Phil Carmody, k=151)
104 6660531932 7498942295 0283335700 5124423071 3755795332 4868264766 0262740717 4714925043 (Phil Carmody, k=17)
105 1902807501 2382829760 9027432544 0279574982 0279574876 8376767480 7896745221 1252142439 (Phil Carmody, k=329)
106 4207025950 2278985246 1675524986 3676927421 6323072684 7883953371 8602057824 5352452409 (Phil Carmody, k=436)
111 7253976377 4797190245 5104536967 8929480203 8929480092 1675503826 4132289958 3824943237 (Phil Carmody, k=102)
112 0790176829 5665378331 6080708237 3109291160 6890708951 3899467990 2556087170 9189999399 (Phil Carmody, k=1)
116 0250924087 8687970425 7395326945 7916560983 7916560867 7665636895 9228590558 0521234039 (Phil Carmody, k=1)
119 1585923291 7766383420 1721374612 3139435119 7506053382 9105962648 0291046185 8174286853 (Phil Carmody, k=114)
120 7562747970 8505507620 4633314017 2751837746 7305175386 2179832324 9991418208 7639636187 (Phil Carmody, k=27)
130 4974686543 4750646379 3802787286 3564356435 6435643694 8539042979 1186289943 7367143723 (Phil Carmody, k=9)
131 1709315197 6167778182 6799167788 1140491019 6172227805 4312132570 9297819903 2358128791 (Dario Alpern, k=2505)
132 9169703083 0364634398 2916957005 3692142162 6307857970 2861845245 6672492235 6609099169 (Dario Alpern, k=2608)
136 6555492232 6469431454 0164140031 9781679422 9814881114 3795305584 1472866694 7960963477 (Phil Carmody, k=2)
137 8567749676 9316606972 5180719318 0000000000 0000000137 8567749676 9316606972 5180719319 (Phil Carmody, k=233)
138 3835543501 7720171183 7904527378 9121645368 9121645230 5286101867 1401474185 1217117991 (Phil Carmody, k=155)
141 2593134653 4653465346 5360660584 8118811881 1881188260 0711946534 6534653465 3479472467 (Phil Carmody, k=1)
149 3612928754 6770754728 1949611686 6364297519 6425340073 3553040320 6749113736 7299949373 (Phil Carmody, k=182)
153 9546104046 3518727460 7135593442 4685280772 7999034118 0143266485 0142409933 1175627049 (Phil Carmody, k=4)
160 2875186790 8023064205 2152327096 4550750013 5449250146 7425936804 3472314191 6703077111 (Phil Carmody, k=35)
162 5072122705 6166159320 4546020221 8181818181 8181818019 3109695476 2015658861 3635797961 (Phil Carmody, k=420)
166 4289871684 0725081547 0917668553 8313912964 3547000353 3160388745 8937887787 4552632643 (Phil Carmody, k=1)
169 6647606521 9513973990 1108575607 6904739865 9963532046 2350868875 0943870819 0114278853 (Phil Carmody, k=206)
175 6870138658 6588350227 2703133056 0559625156 7346399877 1078122411 7562642975 3958254129 (Phil Carmody, k=8)
178 1628078854 6467466286 8028862573 8582001612 1417998566 0210080466 7885464674 6610864187 (Phil Carmody, k=1)
183 3349199975 4817900614 0517237369 6340767938 7523924663 3507563432 1975974625 1967431199 (Phil Carmody, k=1)
183 9915301502 2976012104 1353912316 1864047006 0217116552 9552596873 5711389400 5379321031 (Phil Carmody, k=5)
188 2638199100 1601814620 9225332625 3069306930 6930693257 5707506030 8532507690 2294639557 (Phil Carmody, k=22)
195 1708710891 0891089108 9128427978 1980198019 8019802175 3688908910 8910891089 1108625999 (Phil Carmody, k=313)
195 9777282226 4487459814 1802581853 5050257229 0042836259 9303005753 8507267975 1029308693 (Phil Carmody, k=754)
204 5648442177 3323981090 9867651649 8019801980 1980198224 3668244157 5304179110 7887453631 (Phil Carmody, k=35)
206 1477995592 1419777254 6413567542 0734149527 8841564892 6693934108 5620986539 4225469521 (Phil Carmody, k=760)
206 1971443213 7905224721 5152108350 8381374722 8381374516 6409931509 0476150001 3229266373 (Phil Carmody, k=554)
224 8983259636 3250912078 2722796660 4253180413 6304547636 0960770759 9270938433 2480045227 (Phil Carmody, k=1)
225 6002447366 2190928776 3123468263 5168424407 0725321346 8883056262 7343963246 7959285893 (Phil Carmody, k=14)
228 6040071973 6627195715 3664748051 3262674497 9284870696 6494640117 2876176597 5481356761 (Dario Alpern, k=1020)
228 8948935957 8043626790 8489376216 7018851828 7018851599 8069915870 8975225037 8529475613 (Phil Carmody, k=2)
236 4318228966 3423075609 7066743535 7029702970 2970297266 1347931936 6393372639 4096446507 (Phil Carmody, k=13)
238 6576706940 1020482170 9674537822 9900990099 0099010139 6477697039 1119492071 9575527923 (Phil Carmody, k=1)
241 0146315332 0696684667 9327416795 2229891634 7770108606 2376206966 8466793033 1557308431 (Phil Carmody, k=5)
242 3761502462 9690849855 6466346626 0000000000 0000000242 3761502462 9690849855 6466346627 (Phil Carmody, k=301)
253 2247148516 5590196400 2976898841 9999999999 9999999746 7752851483 4409803599 7023101159 (Phil Carmody, k=761)
263 6703195676 2672842131 1316070715 1756868929 9642498133 8928521892 4220154293 8523685603 (Phil Carmody, k=129)
266 9311926131 0304757541 1511730978 9052708745 6861473418 9939985801 9066676304 1365678963 (Phil Carmody, k=677)
311 1259033158 8420817756 0603429118 8347407276 9583742266 2934504860 6852332626 8199767363 (Phil Carmody, k=7)
313 4022283248 8901142795 7395219049 7259227495 1027157404 2465018505 9269076246 3781416147 (Phil Carmody, k=1)
314 8436846511 2307177468 3741708755 1062199083 8388559121 8885079105 3273064439 6758284639 (Phil Carmody, k=23)
327 8827219080 8875046491 1379828951 5946490075 0403487790 6537240544 7566582405 6818340791 (Dario Alpern, k=1355)
328 0852298102 2986556648 7481672546 7930470538 7598710012 5530581202 4067319338 3552391283 (Phil Carmody, k=59)
331 7639953881 2931968325 6456440080 8716058841 1283941490 6356012722 4215909484 5172498923 (Phil Carmody, k=189)
337 7981469314 2088980176 7613895213 1857389841 5961870602 8121049259 6895179441 9480165813 (Phil Carmody, k=54)
350 0247734488 2008026385 8158462294 0706532849 0081129430 4645181082 4846007120 5973592667 (Phil Carmody, k=1)
357 1040868829 4534246679 0290392232 3378438444 3956880792 5939248705 7720424463 9806166163 (Phil Carmody, k=37)
359 1678259100 1384535266 6169602040 8934701868 6183183384 3116746263 5106028802 4012308769 (Phil Carmody, k=16)
370 7369980592 4796152569 4087259080 8913868776 0514260910 3375578291 5106922318 5066318121 (Phil Carmody, k=20)
370 8429280094 5472501970 4818171964 5931666350 9112010497 8605468167 2268078094 7374187329 (Phil Carmody, k=224)
377 6124141348 7212777231 5070547211 6487091590 3512908787 2611232939 0725685641 1557638803 (Phil Carmody, k=907)
383 8603746588 3542116359 8567982825 0232824290 9767176092 8836570879 3309292068 8800807117 (Phil Carmody, k=2)
389 2738479622 1035960197 8791622034 9359562214 8539973955 8544357206 0862268434 4319634027 (Phil Carmody, k=7)
396 8561400430 7623690954 9279200151 3916366005 2471573308 9657568256 6024463284 5139011563 (Phil Carmody, k=1)
416 2786986863 2557208806 5231693544 4092611742 1277327223 6910455605 4608061815 0343792877 (Phil Carmody, k=2)
417 1334194674 8041073808 4741778584 4726028558 3594179226 4757355815 6968477875 9114171763 (Dario Alpern, k=2117)
423 6363775777 1687386538 6947104593 5425067473 0540224709 4549196655 3241737045 3748022719 (Phil Carmody, k=21)
425 8072854430 2218909149 8997228283 2391979666 7608020759 0464834096 9826929483 1389207951 (Phil Carmody, k=25)
437 0199203187 2509960596 3824701195 2191235496 7808764940 2390438684 0318725099 6015936693 (Phil Carmody, k=554)
465 5492987510 3759340670 5570302923 0081897768 9918102696 5574885279 3677442901 5652200693 (Phil Carmody, k=2)
467 7072152806 7433740244 9853036594 4968654535 2701776221 5918675555 4917610786 0282911547 (Phil Carmody, k=227)
495 6185285338 9458159994 4222362212 1898974122 1898973626 5713688783 2440814127 7676611911 (Phil Carmody, k=85)
503 7002683395 3679846742 2286821216 9891315750 6580290882 7239417691 4745087454 8574536363 (Phil Carmody, k=19)
529 8490926474 4170223599 8729223163 5273416638 4726583891 3764343112 8896806961 4002639803 (Phil Carmody, k=137)
645 5729003154 6229831292 2451995824 6599399060 1559201275 9379366425 0249889479 0568840519 (Phil Carmody, k=1)
702 7021725167 7269247939 9971254950 4752475247 5247525455 1774200415 2516772692 4723730199 (Phil Carmody, k=311)
704 5895082223 3506504356 7905941174 1728839421 8271161282 7623921645 1777664934 9634780597 (Phil Carmody, k=22)
749 8164055273 5700028663 4949301704 7832669791 3298094173 7409180764 4721986914 9597498693 (Phil Carmody, k=2)
789 0237881332 7604391242 5216983711 5737667286 4262333502 5975548619 1866723956 0954650999 (Phil Carmody, k=1)
925 1352283207 1814392122 4240803005 1276100276 9166819186 7925032206 7613418334 1357798203 (Phil Carmody, k=39)
947 4170290154 7514148164 2543159475 1822951018 6968465810 7373508220 9044498756 2441541693 (Phil Carmody, k=14)
958 2217632665 0855203263 8141867554 3651452046 3651451088 1433819381 2796248782 5509584493 (Phil Carmody, k=234)
962 2259855207 2968964344 8823633567 8612735022 2813531725 8716552892 4291172168 8098919963 (Dario Alpern, k=1139)
994 5779130019 4845831847 7458444801 5170453805 6633676903 8943294412 3262007216 3058675151 (Phil Carmody, k=25)
If you have any comment please fill the form .
Perl script written by Dario Alejandro Alpern. Last updated on October 5th, 2022.