Electronics
Mathematics
Programs
Contact
ESP
Known 12-digit prime factors of Googolplex - 10
Alpertron
Number Theory
Known 12-digit prime factors of Googolplex − 10
This is a list of known
12-digit prime factors of googolplex − 10, i.e., 1010^100 − 10.
These numbers have the form 1 + 2k ∏i p i e i ,
where p i is a prime factor of 10100 − 1
and e i is zero or one.
The list of prime factors of 10100 − 1 is: 3, 3, 11,
41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801,
18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.
In the list you can see the prime factors, their discoverer and their corresponding value of k .
101550616267 (k=1)
105470163083 (k=1)
109857368083 (k=7)
118949721493 (k=774382)
120000000013 (k=2)
123219810067 (k=1)
124489521883 (k=599)
125527721947 (k=1)
125558331397 (k=3046)
134409034987 (k=1)
140381980399 (k=1)
141039646747 (k=1)
143026075963 (k=119)
148414634119 (k=461)
149327420533 (k=2)
150795126973 (k=14)
164293080089 (k=4)
167409131761 (k=520)
169038442933 (k=2)
171171985333 (k=2)
175489954883 (k=1)
176027102197 (k=2566)
184185816119 (k=19)
192135151693 (k=94294)
198856922729 (k=4)
208205887027 (k=1)
209131646671 (k=4715)
212485042067 (k=593)
212742089107 (k=1)
217143230173 (k=2)
223798310689 (k=4102928)
223991130799 (k=1)
226226098603 (k=33719)
228252194293 (k=2)
233559385481 (k=21740)
234201924133 (k=242)
235086763519 (k=1)
237322790197 (k=14006)
244804112911 (k=2345)
244925758837 (k=2)
246389458591 (k=5)
256757977999 (k=1)
288197251333 (k=2)
291925181533 (k=2)
292582742437 (k=593862)
293004584563 (k=37)
301425674603 (k=54041)
307039961279 (k=19)
307240799717 (k=429538)
313815306443 (k=1)
319901680627 (k=1)
337222161079 (k=4553)
346497620107 (k=1)
351621094933 (k=698634)
351763935443 (k=1)
353703700639 (k=1)
355512844837 (k=2)
361000686637 (k=138142)
361448004919 (k=1322503)
382902065347 (k=1)
398001502133 (k=26)
409615805083 (k=347)
410512312723 (k=47)
418892088283 (k=317)
432304523003 (k=1)
447326732719 (k=1)
462123693919 (k=1)
462343970677 (k=27286)
482970297079 (k=1)
485823826093 (k=2)
492833128283 (k=1)
501100712683 (k=317)
501524818849 (k=16)
534727186009 (k=1588)
557777777723 (k=1)
564620163853 (k=33322)
564806551879 (k=1)
581450116831 (k=5)
585017992813 (k=2)
589409771311 (k=11595)
597426057169 (k=8)
602221011877 (k=22)
604293837907 (k=1)
607014233719 (k=110183)
610786629671 (k=35)
613395505427 (k=263)
626920594693 (k=2548457702)
650669159911 (k=35)
660000000067 (k=1)
684335539603 (k=39)
689596625917 (k=2)
695832927239 (k=239)
715352097637 (k=2)
719429669839 (k=41)
723210841321 (k=20)
809449763959 (k=1)
819141782077 (k=2)
830946357121 (k=320)
892346276449 (k=16)
912725438329 (k=36)
918280982719 (k=1)
973645936363 (k=9)
973661481973 (k=5950094)
If you have any comment please fill the form .
Perl script written by Dario Alejandro Alpern. Last updated on October 5th, 2022.