Known 79-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 79-digit prime factors of Googolplex − 1
This is a list of known
79-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 100994414 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2585457)
- 117187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 139698386 1923217773 4375000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 140545557 0042880000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=523573)
- 141001207 2157890974 5858032565 0245868018 8283324241 6381835937 5000000000 0000000001 (Dario Alpern, k=8523)
- 158399343 4906005859 3750000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1063)
- 171294720 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=2091)
- 175245033 4720000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2674027)
- 191323046 2946557963 7326300144 1955566406 2500000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1077053)
- 240922815 7546048808 3500771444 5783477685 8362602069 9739456176 7578125000 0000000001 (Dario Alpern, k=37281)
- 314572800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 382998143 3227658271 7895507812 5000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=3289929)
- 399285897 7930284721 3626791525 4537186342 5316405482 5901985168 4570312500 0000000001 (Dario Alpern, k=123573)
- 534577026 3671875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=875851)
- 587314495 4880000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2240427)
- 810822288 7591789995 7315171377 5587268173 6946105957 0312500000 0000000000 0000000001 (Dario Alpern, k=3829)
- 832667268 4688674053 1772375106 8115234375 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 872415232 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)