Known 78-digit prime factors of Googolplex - 1

  1. Alpertron
  2. Number Theory
  3. Known 78-digit prime factors of Googolplex − 1

This is a list of known 78-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

  1. 10759965 4080897839 9472728426 6446076799 1840839385 9863281250 0000000000 0000000001 (Phil Carmody, k=813)
  2. 10821304 3200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
  3. 10942500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4377)
  4. 11464014 9586828221 6505917858 7398491799 8313903808 5937500000 0000000000 0000000001 (Dario Alpern, k=169179)
  5. 12621954 0834426879 8828125000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=169409)
  6. 16465072 6318359375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=215811)
  7. 19236452 4309596163 2207036018 3715820312 5000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=270729)
  8. 28862693 4852320715 6631542602 5539636611 9384765625 0000000000 0000000000 0000000001 (Dario Alpern, k=1663821)
  9. 33703125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=2157)
  10. 40149688 7207031250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=421)
  11. 43568332 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=831)
  12. 46875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  13. 47645603 2830543940 7259314066 3229860365 3907775878 9062500000 0000000000 0000000001 (Phil Carmody, k=9)
  14. 52571406 3360000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6267)
  15. 86389229 1036449933 0171383917 3316955566 4062500000 0000000000 0000000000 0000000001 (Phil Carmody, k=249)
  16. 86669921 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=71)
  17. 99107280 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1238841)