Known 65-digit prime factors of Googolplex - 1

1. Alpertron
2. Number Theory
3. Known 65-digit prime factors of Googolplex − 1

This is a list of known 65-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ m ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

1. 10955 4865179717 3533850582 3165178298 9501953125 0000000000 0000000001 (Dario Alpern, k=394713)
2. 11222 5199114445 3898240000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=24919)
3. 11352 7243161826 1634866939 8576021194 4580078125 0000000000 0000000001 (Dario Alpern, k=16361)
4. 11529 2150460684 6976000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
5. 12407 7091882954 1512307113 0381049442 8034871816 6351318359 3750000001 (Phil Carmody, k=3)
6. 12657 6306355154 4524800000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=719503)
7. 14179 5703125000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=362997)
8. 15016 6900075134 9760000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1067)
9. 18310 5468750000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
10. 18859 7179662090 3098706811 8179195153 0613005161 2854003906 2500000001 (Phil Carmody, k=57)
11. 20180 6640625000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4133)
12. 21896 3623046875 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=287)
13. 26102 8634402393 9481600000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1449)
14. 29664 8237173964 8000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1349)
15. 37451 5617628488 8949190587 9367550369 3521022796 6308593750 0000000001 (Dario Alpern, k=8843)
16. 41943 0400000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
17. 43698 0374568960 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1302303)
18. 47022 9324228688 1280733723 5426530241 9662475585 9375000000 0000000001 (Dario Alpern, k=43371)
19. 48704 4453620910 6445312500 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6537)
20. 48721 0750579833 9843750000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=204351)
21. 52538 8935941883 9841175431 7707256234 3710160348 5643863677 9785156251 (Phil Carmody, k=813)
22. 54931 6406250000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
23. 64865 1123046875 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4251)
24. 67108 8640000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
25. 70983 6109111765 1264920107 5788596426 7188683152 1987915039 0625000001 (Dario Alpern, k=536337)
26. 94283 8592529296 8750000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6178987)
27. 97398 7840000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=23779)