Known 64-digit prime factors of Googolplex - 1

  1. Alpertron
  2. Number Theory
  3. Known 64-digit prime factors of Googolplex − 1

This is a list of known 64-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

  1. 1045 6841770447 6672000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6086683)
  2. 1464 5494881976 3200000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=333)
  3. 2054 7673299877 8880000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=73)
  4. 2181 0380800000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  5. 2359 2960000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  6. 3226 0043889568 0793199849 3899072855 1289066672 3251342773 4375000001 (Phil Carmody, k=39)
  7. 3613 1249156316 2488383831 3166961597 7443754673 0041503906 2500000001 (Phil Carmody, k=273)
  8. 4342 6982159033 9529307489 5633367304 9812205135 8222961425 7812500001 (Phil Carmody, k=21)
  9. 4413 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4413)
  10. 4596 3233219481 4807735383 5105895996 0937500000 0000000000 0000000001 (Phil Carmody, k=207)
  11. 5803 5087152630 2825031962 1292874217 0333862304 6875000000 0000000001 (Dario Alpern, k=669099)
  12. 6192 9628092372 0132705057 0398569107 0556640625 0000000000 0000000001 (Phil Carmody, k=357)
  13. 6821 2102632969 6178436279 2968750000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  14. 7717 5193600000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
  15. 7990 5700112181 6767863492 7142411470 4132080078 1250000000 0000000001 (Phil Carmody, k=737)
  16. 8553 2426834106 4453125000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=358749)
  17. 8816 9250816000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=336339)
  18. 9932 1118720000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)