Known 44-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 44-digit prime factors of Googolplex − 1
This is a list of known
44-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 1144 4091796875 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1160 5152394622 5643157958 9843750000 0000000001 (Phil Carmody, k=319)
- 1195 9968566894 5312500000 0000000000 0000000001 (Dario Alpern, k=1567617)
- 1464 2253004800 0000000000 0000000000 0000000001 (Dario Alpern, k=4468461)
- 1467 3941598482 3689225835 6428800000 0000000001 (Dario Alpern, k=6069)
- 1501 2011863291 2635803222 6562500000 0000000001 (Dario Alpern, k=644761)
- 1507 0252038457 7552882073 6000000000 0000000001 (Phil Carmody, k=2553)
- 1533 3033246720 0000000000 0000000000 0000000001 (Phil Carmody, k=357)
- 1562 0571502950 0424861907 9589843750 0000000001 (Phil Carmody, k=687)
- 1584 3280000000 0000000000 0000000000 0000000001 (Dario Alpern, k=198041)
- 1589 8885685206 8919338545 9712000000 0000000001 (Dario Alpern, k=10521)
- 1766 4000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 1823 0571291595 7678080000 0000000000 0000000001 (Phil Carmody, k=253)
- 1847 7439880371 0937500000 0000000000 0000000001 (Phil Carmody, k=31)
- 2249 3042051792 1447753906 2500000000 0000000001 (Dario Alpern, k=603793)
- 2457 6000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2886 2180229120 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 3102 4000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1939)
- 3145 0960775911 8371232153 6000000000 0000000001 (Phil Carmody, k=333)
- 3239 6083200000 0000000000 0000000000 0000000001 (Dario Alpern, k=19773)
- 3288 1791412364 6914958953 8574218750 0000000001 (Dario Alpern, k=4519239)
- 3690 4000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4613)
- 3712 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
- 4294 9672960000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 5300 7812500000 0000000000 0000000000 0000000001 (Phil Carmody, k=1357)
- 5479 2014486568 9600000000 0000000000 0000000001 (Dario Alpern, k=637863)
- 6047 3139527680 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 6399 1576736563 2000000000 0000000000 0000000001 (Phil Carmody, k=291)
- 6485 1834634135 1424000000 0000000000 0000000001 (Phil Carmody, k=9)