Known 42-digit prime factors of Googolplex - 1

  1. Alpertron
  2. Number Theory
  3. Known 42-digit prime factors of Googolplex − 1

This is a list of known 42-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

  1. 11 2786423414 9456024169 9218750000 0000000001 (Dario Alpern, k=242207)
  2. 12 0795955200 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  3. 12 2725335040 0000000000 0000000000 0000000001 (Phil Carmody, k=1463)
  4. 13 7745066178 6021210882 0480000000 0000000001 (Dario Alpern, k=298687)
  5. 13 9083862304 6875000000 0000000000 0000000001 (Phil Carmody, k=1823)
  6. 14 7059680215 0400000000 0000000000 0000000001 (Phil Carmody, k=107)
  7. 15 0537860910 0528540927 6244787200 0000000001 (Dario Alpern, k=62261)
  8. 15 2587890625 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 16 6227300197 0115115220 9920000000 0000000001 (Phil Carmody, k=11)
  10. 16 7772160000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 20 4243181520 6131405499 0961049600 0000000001 (Dario Alpern, k=84473)
  12. 24 8339292092 3148386304 0000000000 0000000001 (Phil Carmody, k=1077)
  13. 35 6280000000 0000000000 0000000000 0000000001 (Dario Alpern, k=8907)
  14. 37 7500000000 0000000000 0000000000 0000000001 (Phil Carmody, k=151)
  15. 39 6097712122 7283470745 6000000000 0000000001 (Dario Alpern, k=8589)
  16. 40 9600000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  17. 41 1384348808 4967248141 7655944824 2187500001 (Dario Alpern, k=144743)
  18. 50 6829577044 9092893521 4734376960 0000000001 (Dario Alpern, k=1048099)
  19. 58 0443439104 0000000000 0000000000 0000000001 (Dario Alpern, k=276777)
  20. 58 2375230620 0455050166 1881139200 0000000001 (Dario Alpern, k=963459)
  21. 60 1339340209 9609375000 0000000000 0000000001 (Dario Alpern, k=12611)
  22. 62 9800260390 0928000000 0000000000 0000000001 (Phil Carmody, k=179)
  23. 63 6134400000 0000000000 0000000000 0000000001 (Dario Alpern, k=24849)
  24. 73 4439407616 0000000000 0000000000 0000000001 (Phil Carmody, k=171)
  25. 77 6613946520 4377818312 4746240000 0000000001 (Phil Carmody, k=803)
  26. 87 6871680000 0000000000 0000000000 0000000001 (Phil Carmody, k=669)
  27. 93 9941406250 0000000000 0000000000 0000000001 (Phil Carmody, k=77)
  28. 94 5703125000 0000000000 0000000000 0000000001 (Phil Carmody, k=2421)
  29. 97 7856430080 0000000000 0000000000 0000000001 (Dario Alpern, k=2984181)