Known 42-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 42-digit prime factors of Googolplex − 1
This is a list of known
42-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 11 2786423414 9456024169 9218750000 0000000001 (Dario Alpern, k=242207)
- 12 0795955200 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 12 2725335040 0000000000 0000000000 0000000001 (Phil Carmody, k=1463)
- 13 7745066178 6021210882 0480000000 0000000001 (Dario Alpern, k=298687)
- 13 9083862304 6875000000 0000000000 0000000001 (Phil Carmody, k=1823)
- 14 7059680215 0400000000 0000000000 0000000001 (Phil Carmody, k=107)
- 15 0537860910 0528540927 6244787200 0000000001 (Dario Alpern, k=62261)
- 15 2587890625 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 16 6227300197 0115115220 9920000000 0000000001 (Phil Carmody, k=11)
- 16 7772160000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 20 4243181520 6131405499 0961049600 0000000001 (Dario Alpern, k=84473)
- 24 8339292092 3148386304 0000000000 0000000001 (Phil Carmody, k=1077)
- 35 6280000000 0000000000 0000000000 0000000001 (Dario Alpern, k=8907)
- 37 7500000000 0000000000 0000000000 0000000001 (Phil Carmody, k=151)
- 39 6097712122 7283470745 6000000000 0000000001 (Dario Alpern, k=8589)
- 40 9600000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 41 1384348808 4967248141 7655944824 2187500001 (Dario Alpern, k=144743)
- 50 6829577044 9092893521 4734376960 0000000001 (Dario Alpern, k=1048099)
- 58 0443439104 0000000000 0000000000 0000000001 (Dario Alpern, k=276777)
- 58 2375230620 0455050166 1881139200 0000000001 (Dario Alpern, k=963459)
- 60 1339340209 9609375000 0000000000 0000000001 (Dario Alpern, k=12611)
- 62 9800260390 0928000000 0000000000 0000000001 (Phil Carmody, k=179)
- 63 6134400000 0000000000 0000000000 0000000001 (Dario Alpern, k=24849)
- 73 4439407616 0000000000 0000000000 0000000001 (Phil Carmody, k=171)
- 77 6613946520 4377818312 4746240000 0000000001 (Phil Carmody, k=803)
- 87 6871680000 0000000000 0000000000 0000000001 (Phil Carmody, k=669)
- 93 9941406250 0000000000 0000000000 0000000001 (Phil Carmody, k=77)
- 94 5703125000 0000000000 0000000000 0000000001 (Phil Carmody, k=2421)
- 97 7856430080 0000000000 0000000000 0000000001 (Dario Alpern, k=2984181)