Known 36-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 36-digit prime factors of Googolplex − 1
This is a list of known
36-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 100099 0578640912 9566567137 2800000001 (Phil Carmody, k=207)
- 101863 4065985679 6264648437 5000000001 (Phil Carmody, k=7)
- 102220 2216448000 0000000000 0000000001 (Phil Carmody, k=119)
- 133849 6361251482 6079038364 6081024001 (Dario Alpern, k=864983)
- 140625 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 153314 9184000000 0000000000 0000000001 (Dario Alpern, k=11697)
- 161178 4263440372 0724480000 0000000001 (Phil Carmody, k=699)
- 188810 0060533100 5080862720 0000000001 (Dario Alpern, k=6550663)
- 218049 0642786026 0009765625 0000000001 (Dario Alpern, k=585321)
- 230316 2684289664 2938443226 3626752001 (Phil Carmody, k=2907)
- 234375 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 241502 1793396200 8435097600 0000000001 (Dario Alpern, k=837879)
- 245760 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 255007 7900749608 4153958400 0000000001 (Phil Carmody, k=27)
- 261597 6191793159 3662464000 0000000001 (Dario Alpern, k=2904317)
- 300037 0514415190 4646675093 9922432001 (Dario Alpern, k=3787)
- 309485 0098213450 6872478105 6000000001 (Phil Carmody, k=1)
- 340010 3867666144 5538611200 0000000001 (Phil Carmody, k=9)
- 355271 3678800500 9293556213 3789062501 (Phil Carmody, k=1)
- 377487 3600000000 0000000000 0000000001 (Phil Carmody, k=9)
- 386289 7709191004 1600000000 0000000001 (Dario Alpern, k=702657)
- 387973 1200000000 0000000000 0000000001 (Phil Carmody, k=37)
- 410889 3347388640 0413696000 0000000001 (Dario Alpern, k=1140447)
- 410946 0860490798 9501953125 0000000001 (Phil Carmody, k=353)
- 424760 5355686161 4236837785 6327680001 (Dario Alpern, k=4391921)
- 450828 9731657728 0000000000 0000000001 (Dario Alpern, k=262417)
- 497013 5829599663 4630520307 7120000001 (Dario Alpern, k=5139)
- 498515 9680000000 0000000000 0000000001 (Dario Alpern, k=30427)
- 506435 0557536256 0000000000 0000000001 (Phil Carmody, k=2303)
- 512650 9901224345 6000000000 0000000001 (Dario Alpern, k=5968043)
- 569254 9928996306 9440000000 0000000001 (Phil Carmody, k=79)
- 596046 4477539062 5000000000 0000000001 (Phil Carmody, k=1)
- 632981 4698920236 8958440669 1840000001 (Dario Alpern, k=52359)
- 676184 6186967040 0000000000 0000000001 (Dario Alpern, k=314873)
- 811906 1589241027 8320312500 0000000001 (Dario Alpern, k=544861)
- 844424 9301319680 0000000000 0000000001 (Phil Carmody, k=3)
- 953386 2707200000 0000000000 0000000001 (Dario Alpern, k=45461)
- 979763 2000000000 0000000000 0000000001 (Phil Carmody, k=299)
- 982347 6687201894 4000000000 0000000001 (Phil Carmody, k=349)
- 989335 7781611906 7226931200 0000000001 (Phil Carmody, k=419)