Known 36-digit prime factors of Googolplex - 1

  1. Alpertron
  2. Number Theory
  3. Known 36-digit prime factors of Googolplex − 1

This is a list of known 36-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

  1. 100099 0578640912 9566567137 2800000001 (Phil Carmody, k=207)
  2. 101863 4065985679 6264648437 5000000001 (Phil Carmody, k=7)
  3. 102220 2216448000 0000000000 0000000001 (Phil Carmody, k=119)
  4. 133849 6361251482 6079038364 6081024001 (Dario Alpern, k=864983)
  5. 140625 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  6. 153314 9184000000 0000000000 0000000001 (Dario Alpern, k=11697)
  7. 161178 4263440372 0724480000 0000000001 (Phil Carmody, k=699)
  8. 188810 0060533100 5080862720 0000000001 (Dario Alpern, k=6550663)
  9. 218049 0642786026 0009765625 0000000001 (Dario Alpern, k=585321)
  10. 230316 2684289664 2938443226 3626752001 (Phil Carmody, k=2907)
  11. 234375 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 241502 1793396200 8435097600 0000000001 (Dario Alpern, k=837879)
  13. 245760 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  14. 255007 7900749608 4153958400 0000000001 (Phil Carmody, k=27)
  15. 261597 6191793159 3662464000 0000000001 (Dario Alpern, k=2904317)
  16. 300037 0514415190 4646675093 9922432001 (Dario Alpern, k=3787)
  17. 309485 0098213450 6872478105 6000000001 (Phil Carmody, k=1)
  18. 340010 3867666144 5538611200 0000000001 (Phil Carmody, k=9)
  19. 355271 3678800500 9293556213 3789062501 (Phil Carmody, k=1)
  20. 377487 3600000000 0000000000 0000000001 (Phil Carmody, k=9)
  21. 386289 7709191004 1600000000 0000000001 (Dario Alpern, k=702657)
  22. 387973 1200000000 0000000000 0000000001 (Phil Carmody, k=37)
  23. 410889 3347388640 0413696000 0000000001 (Dario Alpern, k=1140447)
  24. 410946 0860490798 9501953125 0000000001 (Phil Carmody, k=353)
  25. 424760 5355686161 4236837785 6327680001 (Dario Alpern, k=4391921)
  26. 450828 9731657728 0000000000 0000000001 (Dario Alpern, k=262417)
  27. 497013 5829599663 4630520307 7120000001 (Dario Alpern, k=5139)
  28. 498515 9680000000 0000000000 0000000001 (Dario Alpern, k=30427)
  29. 506435 0557536256 0000000000 0000000001 (Phil Carmody, k=2303)
  30. 512650 9901224345 6000000000 0000000001 (Dario Alpern, k=5968043)
  31. 569254 9928996306 9440000000 0000000001 (Phil Carmody, k=79)
  32. 596046 4477539062 5000000000 0000000001 (Phil Carmody, k=1)
  33. 632981 4698920236 8958440669 1840000001 (Dario Alpern, k=52359)
  34. 676184 6186967040 0000000000 0000000001 (Dario Alpern, k=314873)
  35. 811906 1589241027 8320312500 0000000001 (Dario Alpern, k=544861)
  36. 844424 9301319680 0000000000 0000000001 (Phil Carmody, k=3)
  37. 953386 2707200000 0000000000 0000000001 (Dario Alpern, k=45461)
  38. 979763 2000000000 0000000000 0000000001 (Phil Carmody, k=299)
  39. 982347 6687201894 4000000000 0000000001 (Phil Carmody, k=349)
  40. 989335 7781611906 7226931200 0000000001 (Phil Carmody, k=419)