Known 32-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 32-digit prime factors of Googolplex − 1
This is a list of known
32-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 10 3892062623 1321947013 1200000001 (Phil Carmody, k=11)
- 10 5664000000 0000000000 0000000001 (Phil Carmody, k=1651)
- 11 1709097865 3423484078 7960463361 (Dario Alpern, k=231009)
- 11 3378098628 8196812800 0000000001 (Dario Alpern, k=5155839)
- 12 9171456000 0000000000 0000000001 (Phil Carmody, k=1971)
- 13 5333529090 4535944396 8000000001 (Dario Alpern, k=187813)
- 14 3552238122 4345600000 0000000001 (Phil Carmody, k=51)
- 15 9902343750 0000000000 0000000001 (Dario Alpern, k=8187)
- 16 3709046319 1270828247 0703125001 (Phil Carmody, k=9)
- 17 1798691840 0000000000 0000000001 (Phil Carmody, k=1)
- 19 2000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 19 3045176731 3704576614 4000000001 (Phil Carmody, k=2093)
- 20 7768000000 0000000000 0000000001 (Dario Alpern, k=25971)
- 20 8066302784 5169152000 0000000001 (Phil Carmody, k=231)
- 20 9808349609 3750000000 0000000001 (Phil Carmody, k=11)
- 23 9428125000 0000000000 0000000001 (Dario Alpern, k=76617)
- 23 9807672958 2241710080 0000000001 (Phil Carmody, k=13)
- 24 4140625000 0000000000 0000000001 (Phil Carmody, k=1)
- 28 7327775621 1200000000 0000000001 (Dario Alpern, k=1712607)
- 29 0824449537 0771496960 0000000001 (Phil Carmody, k=1009)
- 34 5876451382 0540928000 0000000001 (Phil Carmody, k=3)
- 40 9272615797 8177070617 6757812501 (Phil Carmody, k=9)
- 41 7368815697 9200000000 0000000001 (Dario Alpern, k=77741)
- 42 8877000000 0000000000 0000000001 (Dario Alpern, k=428877)
- 45 7763671875 0000000000 0000000001 (Phil Carmody, k=3)
- 46 4970278755 5888312521 1105853441 (Phil Carmody, k=939)
- 49 7664000000 0000000000 0000000001 (Phil Carmody, k=243)
- 56 8434188608 0801486968 9941406251 (Phil Carmody, k=1)
- 70 2601297920 0000000000 0000000001 (Dario Alpern, k=2144169)
- 71 5255737304 6875000000 0000000001 (Phil Carmody, k=3)
- 71 8146504184 7718120521 7280000001 (Dario Alpern, k=97327)
- 72 1228125000 0000000000 0000000001 (Dario Alpern, k=230793)
- 72 5355491768 7775048237 0560000001 (Phil Carmody, k=3)
- 75 5578637259 1432341913 6000000001 (Phil Carmody, k=1)
- 85 9157105233 0223665152 0000000001 (Phil Carmody, k=1863)
- 92 9361723828 7461780553 7280000001 (Phil Carmody, k=123)