Known 24-digit prime factors of Googolplex - 1

  1. Alpertron
  2. Number Theory
  3. Known 24-digit prime factors of Googolplex − 1

This is a list of known 24-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

  1. 1144 4091796875 0000000001 (Phil Carmody, k=3)
  2. 1218 4983825683 5937500001 (Dario Alpern, k=7985551)
  3. 1559 0731284480 0000000001 (Phil Carmody, k=363)
  4. 1566 4000000000 0000000001 (Phil Carmody, k=979)
  5. 1648 8941486080 0000000001 (Dario Alpern, k=393127)
  6. 1677 7216000000 0000000001 (Phil Carmody, k=1)
  7. 1838 3026123046 8750000001 (Dario Alpern, k=4819)
  8. 1888 9465931478 5808547841 (Phil Carmody, k=1)
  9. 2013 2659200000 0000000001 (Phil Carmody, k=3)
  10. 2149 0456845871 6276326401 (Phil Carmody, k=233)
  11. 2338 8947711262 7200000001 (Dario Alpern, k=4356531)
  12. 2899 1029248000 0000000001 (Phil Carmody, k=27)
  13. 3351 3114414612 4800000001 (Phil Carmody, k=381)
  14. 3440 6400000000 0000000001 (Phil Carmody, k=21)
  15. 3707 0254432793 3952000001 (Phil Carmody, k=1317)
  16. 3778 6366355963 9040000001 (Dario Alpern, k=68733)
  17. 3791 9046485671 9360000001 (Dario Alpern, k=2207179)
  18. 3906 2500000000 0000000001 (Phil Carmody, k=1)
  19. 4896 8020653647 8040260609 (Dario Alpern, k=3397839)
  20. 4995 9059587072 0000000001 (Phil Carmody, k=727)
  21. 5033 1648000000 0000000001 (Phil Carmody, k=3)
  22. 6507 2465979880 0229990401 (Dario Alpern, k=1444899)
  23. 6832 0312500000 0000000001 (Phil Carmody, k=1749)
  24. 6871 9476736000 0000000001 (Phil Carmody, k=1)
  25. 6880 0000000000 0000000001 (Phil Carmody, k=43)
  26. 6984 9193096160 8886718751 (Phil Carmody, k=3)
  27. 7036 8744177664 0000000001 (Phil Carmody, k=1)
  28. 8761 8827819824 2187500001 (Phil Carmody, k=147)
  29. 9412 5000000000 0000000001 (Phil Carmody, k=753)