Known 14-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 14-digit prime factors of Googolplex − 1
This is a list of known
14-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 1212 3750000001 (Dario Alpern, k=9699)
- 1346 2517317633 (Dario Alpern, k=12838857)
- 1381 6406250001 (Dario Alpern, k=3537)
- +14103673319201 (Dario Alpern)
(k=17629591649)
- 1525 8789062501 (Phil Carmody, k=1)
- 1623 9820800001 (Phil Carmody, k=1239)
- 1653 5624089601 (Phil Carmody, k=77)
- +20248874160001 (Dario Alpern)
(k=253110927)
- 2241 4360576001 (Phil Carmody, k=167)
- 2257 4752000001 (Dario Alpern, k=705461)
- 2336 4622090241 (Phil Carmody, k=17)
- 2409 6000000001 (Phil Carmody, k=753)
- +26216896777501 (Dario Alpern)
(k=10486758711)
- 2836 4062500001 (Dario Alpern, k=18153)
- 2944 0000000001 (Phil Carmody, k=23)
- 3148 5300000001 (Dario Alpern, k=314853)
- 3222 6562500001 (Phil Carmody, k=33)
- +37750052632001 (Dario Alpern)
(k=4718756579)
- 3789 0625000001 (Phil Carmody, k=97)
- 4000 0000000001 (Phil Carmody, k=1)
- 4294 9672960001 (Phil Carmody, k=1)
- +42995495312501 (Dario Alpern)
(k=27517117)
- 4427 3437500001 (Dario Alpern, k=5667)
- 4577 6367187501 (Phil Carmody, k=3)
- 4617 9488366593 (Phil Carmody, k=21)
- 4884 3325440001 (Dario Alpern, k=74529)
- 4915 2000000001 (Phil Carmody, k=3)
- +50779597795001 (Dario Alpern)
(k=10155919559)
- +54789630784001 (Dario Alpern)
(k=856087981)
- 6220 8000000001 (Phil Carmody, k=243)
- 6250 0000000001 (Phil Carmody, k=1)
- 7708 7402343751 (Phil Carmody, k=1263)
- +78875943472201 ()
(k=394379717361)
- 7893 1200000001 (Dario Alpern, k=12333)
- 7916 2597656251 (Phil Carmody, k=1297)
- +84941592144001 (Dario Alpern)
(k=5308849509)
- +87770788000001 (Dario Alpern)
(k=21942697)