Known 84-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 84-digit prime factors of Googolplex − 1
This is a list of known
84-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 1045 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=209)
- 1073 7418240000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1115 7989501953 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)
- 1976 9892864000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2413317)
- 2005 7740190981 8320291378 7681609392 1661376953 1250000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)
- 2021 4843750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=207)
- 2055 2089600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
- 2555 5891625117 5105571746 8261718750 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=28099)
- 2768 0982506161 9108055310 7894957065 5822753906 2500000000 0000000000 0000000000 0000000001 (Dario Alpern, k=15957)
- 3019 3871749120 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=359939)
- 3863 4928589686 9787393370 6432580947 8759765625 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=139197)
- 4456 1251390240 4749899233 1384215503 9310455322 2656250000 0000000000 0000000000 0000000001 (Dario Alpern, k=82201)
- 8800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 9657 4837016305 5369630455 9707641601 5625000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=135917)
- 9932 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=97)