Known 74-digit prime factors of Googolplex - 1

  1. Alpertron
  2. Number Theory
  3. Known 74-digit prime factors of Googolplex − 1

This is a list of known 74-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

  1. 1100 0270238515 2000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6403)
  2. 1280 5685400962 8295898437 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  3. 1387 7787807814 4567552953 9585113525 3906250000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 1730 1376000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=135167)
  5. 1763 9160156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=289)
  6. 3390 6037699704 6830638282 6995104551 3153076171 8750000000 0000000000 0000000001 (Dario Alpern, k=39091)
  7. 3590 3242240000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=107)
  8. 3725 2902984619 1406250000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 3931 6827516215 2283817205 5169369406 5686912608 7258337065 5775070190 4296875001 (Phil Carmody, k=623)
  10. +42051775804956304559810859008305819975199677041099230574273451704628125001 () (k=13456568257586017459139474882657862392063896653151753783767504545481)
  11. 4483 0798131415 9388824076 7594444147 1926893427 7351945638 6566162109 3750000001 (Dario Alpern, k=693723)
  12. 4587 5200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  13. 4813 1786752492 1894073486 3281250000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4134489)
  14. 4899 3686711795 7142170325 8238267153 5015106201 1718750000 0000000000 0000000001 (Dario Alpern, k=451887)
  15. 6505 2130349130 2660404471 6805219650 2685546875 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  16. 6566 1879489198 3270645141 6015625000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=18049)