Known 71-digit prime factors of Googolplex - 1
-
Alpertron
-
Number Theory
-
Known 71-digit prime factors of Googolplex − 1
This is a list of known
71-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.
In the list you can see the prime factors and their corresponding value of k.
- 1 2881695710 1207663072 2731351852 4169921875 0000000000 0000000000 0000000001 (Dario Alpern, k=29007)
- 1 4692777984 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=112097)
- 1 4961361885 0708007812 5000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=25101)
- 1 5146129380 2434266639 0518845342 9495609725 5635540932 4169158935 5468750001 (Phil Carmody, k=3)
- 1 7131271401 4604239309 8468892276 2870788574 2187500000 0000000000 0000000001 (Dario Alpern, k=6172191)
- 1 8310546875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 4414062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2 6400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 4 1020767071 4926138814 0988539470 4883943006 7346256691 9624805450 4394531251 (Phil Carmody, k=13)
- 4 2244363562 8155789163 4292900562 2863769531 2500000000 0000000000 0000000001 (Dario Alpern, k=1902517)
- 4 9275407583 7252814132 3821310182 3959050307 1667626500 1296997070 3125000001 (Phil Carmody, k=61)
- 5 3569199218 7500000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2742743)
- 5 4210108624 2752217003 7264004349 7085571289 0625000000 0000000000 0000000001 (Phil Carmody, k=1)
- 5 5291480000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1382287)
- 5 7385628467 2000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=68409)
- 6 7462027072 9064941406 2500000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=45273)
- 8 2422957348 1716215610 5041503906 2500000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)