# Known 45-digit prime factors of Googolplex - 1

1. Alpertron
2. Number Theory
3. Known 45-digit prime factors of Googolplex − 1

This is a list of known 45-digit prime factors of googolplex − 1, i.e., 1010^100 − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 100 and 0 ≤ n ≤ 100.

In the list you can see the prime factors and their corresponding value of k.

1. 11318 3726963261 4400000000 0000000000 0000000001 (Dario Alpern, k=5147)
2. 12244 0429687500 0000000000 0000000000 0000000001 (Dario Alpern, k=125379)
3. 13405 2457658449 9200000000 0000000000 0000000001 (Phil Carmody, k=381)
4. 13750 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
5. 13942 5000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=5577)
6. 15046 0868037211 9577559040 0000000000 0000000001 (Dario Alpern, k=16313)
7. 15970 1864911208 4480000000 0000000000 0000000001 (Dario Alpern, k=4539)
8. 17525 4300000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1752543)
9. 18826 7888640000 0000000000 0000000000 0000000001 (Dario Alpern, k=143637)
10. 19342 8131138340 6679529881 6000000000 0000000001 (Phil Carmody, k=1)
11. 21196 3197216391 5634155273 4375000000 0000000001 (Dario Alpern, k=7283)
12. 22436 5193091102 8102855198 0853080749 5117187501 (Dario Alpern, k=1010451)
13. 22716 3504640000 0000000000 0000000000 0000000001 (Phil Carmody, k=677)
14. 26719 8505418752 0000000000 0000000000 0000000001 (Dario Alpern, k=15553)
15. 26843 5456000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
16. 29651 6295778631 6800000000 0000000000 0000000001 (Dario Alpern, k=3371)
17. 31876 7104000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
18. 34106 0513164848 0892181396 4843750000 0000000001 (Phil Carmody, k=3)
19. 38345 4680186880 0000000000 0000000000 0000000001 (Phil Carmody, k=279)
20. 40114 1733163967 7286148071 2890625000 0000000001 (Dario Alpern, k=22053)
21. 44353 4098337750 0378992408 5140228271 4843750001 (Phil Carmody, k=799)
22. 46492 7588352000 0000000000 0000000000 0000000001 (Dario Alpern, k=886779)
23. 46875 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
24. 47369 3317465374 7200000000 0000000000 0000000001 (Dario Alpern, k=1378629)
25. 48481 8407642251 2589488178 4915924072 2656250001 (Dario Alpern, k=545857)
26. 60332 2405368089 6759033203 1250000000 0000000001 (Phil Carmody, k=2073)
27. 62191 0425600000 0000000000 0000000000 0000000001 (Dario Alpern, k=5931)
28. 65052 1303491302 6604044716 8052196502 6855468751 (Phil Carmody, k=3)
29. 69277 9167366097 6812243461 6088867187 5000000001 (Phil Carmody, k=39)
30. 81118 5280000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1267477)
31. 81485 0791357457 6377868652 3437500000 0000000001 (Dario Alpern, k=1399903)