Known 84-digit prime factors of Googolplex - 10

  1. Alpertron
  2. Number Theory
  3. Known 84-digit prime factors of Googolplex − 10

This is a list of known 84-digit prime factors of googolplex − 10, i.e., 1010^100 − 10.

These numbers have the form 1 + 2ki piei, where pi is a prime factor of 10100 − 1 and ei is zero or one.

The list of prime factors of 10100 − 1 is: 3, 3, 11, 41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801, 18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1003 5679704345 5653543042 9183715854 4895464515 9201541516 7077569713 0196187954 8865579587 (Phil Carmody, k=7)
  2. 1034 1223675923 8453876760 5982685770 1663791179 8336209854 2887467103 6790085580 7646476951 (Phil Carmody, k=25)
  3. 1088 4098377716 5589621313 2897466344 0813008130 0813007041 6714630413 5223386816 7915541787 (Phil Carmody, k=1)
  4. 1105 0935512825 0184647956 2116154331 0260680692 3491837009 8059806435 6219203616 0029952277 (Phil Carmody, k=62)
  5. 1112 1231296507 4528263662 9911870131 4937916709 8443891693 3387895102 7899692887 4906524667 (Phil Carmody, k=1)
  6. 1317 0036296247 7925218775 5166303383 6633663366 3366337950 6669959614 1291555409 1799966751 (Phil Carmody, k=375)
  7. 1401 8357100178 9873750355 9063667871 9452132166 0547869235 7809232345 0421618189 8515800039 (Phil Carmody, k=1)
  8. 1415 8090326458 6544020176 7773752527 9797979797 9797978382 1707653339 3253959621 2024227271 (Phil Carmody, k=35)
  9. 1563 9067293744 7963321163 7104660523 9207920792 0792080771 8275214536 8755400371 6312581317 (Phil Carmody, k=446)
  10. 1817 0380772668 3994357834 7418143700 7749621470 5246170765 9740350712 0259977375 1820732677 (Phil Carmody, k=22)
  11. 2051 0398145009 1059481775 1755444243 5883134130 1460821322 1341562826 2194170283 2573905027 (Phil Carmody, k=11)
  12. 2186 7669007403 1686992596 8531684093 2427309466 7572692720 0096316869 9259683130 0958993561 (Phil Carmody, k=620)
  13. 2277 6005755898 8351711968 9365654107 2553751494 7446250782 8559507393 5797960474 1919405603 (Phil Carmody, k=89)
  14. 2289 7093558847 2322448090 2830303488 0000000000 0000002289 7093558847 2322448090 2830303489 (Phil Carmody, k=128)
  15. 2356 9891287310 2648780977 5110584600 6954208530 9825736733 2200218859 7489731597 0514129517 (Dario Alpern, k=1822)
  16. 2372 6113420908 5927643874 2645491738 4613141659 6629400209 4384025222 8238322419 7612713237 (Phil Carmody, k=2)
  17. 2430 1328945323 8439254676 1803758613 2971639068 7028363361 4300584392 5467615607 4775397683 (Phil Carmody, k=689)
  18. 2460 7635346556 7545697723 6636270203 2890022266 7109980194 0525368823 4655675456 9526292471 (Phil Carmody, k=465)
  19. 2505 4023938471 1110755806 8058454367 2939284988 6485099216 3138454087 2585501293 3964495961 (Phil Carmody, k=20)
  20. 2606 4913079341 0142421777 6510473155 9393939393 9393936787 4480860052 9251517616 2883466239 (Phil Carmody, k=73)
  21. 2649 1245658226 0115339252 6369273335 3043195953 8454155409 2954025742 4126398825 4082922199 (Phil Carmody, k=201)
  22. 2649 8953194029 9931785873 2190440026 0000000000 0000002649 8953194029 9931785873 2190440027 (Phil Carmody, k=1)
  23. 2687 3559777914 6727288751 9670642316 8935821479 1064181208 2495599393 7791467272 8606463797 (Phil Carmody, k=46)
  24. 2829 4733614571 5819681915 2264786608 9229031347 0770971482 3962645918 6590650568 1493817957 (Phil Carmody, k=842)
  25. 2839 9479200498 1130128639 6279935529 1618186952 8381815887 1097387450 9511941686 7898122483 (Phil Carmody, k=359)
  26. 2861 9480840940 7763995422 8885835749 1858073062 8141929799 1338914003 5905922360 0743908813 (Dario Alpern, k=2314)
  27. 2956 4660763089 9675333386 9676716482 3366336633 6633666322 8027099723 6308996753 3043053117 (Phil Carmody, k=478)
  28. 3176 3135341455 0685556019 3308432208 0016966292 9191300764 3790647780 7037124959 8179026119 (Phil Carmody, k=241)
  29. 3518 2486058952 8828493236 9992227296 9439936410 7288538470 1694913314 4197100544 2475597561 (Phil Carmody, k=260)
  30. 4115 1640684375 3735072197 7322263213 5388788608 4826519744 5476753395 1637909352 5480223717 (Phil Carmody, k=2)
  31. 4282 1373638174 6932758782 0009428717 0368090495 3971333095 0653529731 1176373091 3411522599 (Phil Carmody, k=581)
  32. 4354 0022355358 4161138013 5941049605 8740804326 1259200027 8763159684 5420333687 4681853933 (Phil Carmody, k=106)
  33. 4431 7757809478 0571203871 6847103600 8315706591 2595097993 5919275707 2594260362 5702568267 (Phil Carmody, k=1)
  34. 4989 6629768628 1348051641 1285820897 7683086881 6323673403 2836008202 7340111595 6553473761 (Dario Alpern, k=2320)
  35. 5267 0511449922 9007990280 7753281802 0000000000 0000005267 0511449922 9007990280 7753281803 (Phil Carmody, k=489)
  36. 5363 5524191270 5414432184 2178842926 7967781149 2032224214 3491972419 7446651035 0146624077 (Phil Carmody, k=146)
  37. 5410 9457746127 3522908524 0387347964 2601626016 2601620605 3143879888 9078717492 2214278053 (Phil Carmody, k=2)
  38. 5497 6558681468 6450719776 8878477425 6834765040 3165240457 3393446508 9615954736 5713242467 (Phil Carmody, k=877)
  39. 5811 9597590333 0936730687 2346977828 3472280407 1891529667 5948525005 6028700458 9111216773 (Phil Carmody, k=2)
  40. 5978 4341293548 3070810339 0847965728 2085491495 6826521373 8222285596 7779621395 6416808637 (Phil Carmody, k=962)
  41. 6324 8230804182 6116595017 7035381519 7520480788 0332140301 9352057004 3880718479 1836440003 (Phil Carmody, k=677)
  42. 6453 2000262658 4570807678 4419314932 0000000000 0000006453 2000262658 4570807678 4419314933 (Phil Carmody, k=2)
  43. 7019 9319524124 8069500050 0236148204 7256576841 5246882699 9959239350 0523743327 9644935493 (Phil Carmody, k=2)
  44. 7217 7664365306 5425890301 9413188662 8895236043 1104771174 6559601349 6530654258 8308424707 (Phil Carmody, k=151)
  45. 7547 9177423213 7814176786 2940614988 0135554927 9864452619 9312978141 7678621858 3076169917 (Phil Carmody, k=522)
  46. 7672 9428922896 6558566952 3412883730 5346626907 4121276474 4208005170 8672048861 7541727241 (Phil Carmody, k=20)
  47. 7789 5183402644 7362280580 5094154478 7626754203 2373253586 2810156847 9735526377 2720908683 (Phil Carmody, k=1)
  48. 7840 8579795823 9640258848 8449053522 5561984047 8808333771 1805046706 0073516144 7021137237 (Phil Carmody, k=46)
  49. 7884 1437555551 5559475171 5120409840 0000000000 0000007884 1437555551 5559475171 5120409841 (Phil Carmody, k=40)
  50. 7902 2602335087 2089009190 6033831213 3347047111 3343079597 1160471279 7183597215 9199970997 (Dario Alpern, k=1046)
  51. 8342 5001221698 5945106456 6701169070 2564309512 5829569148 2146985762 6824333657 2866084231 (Phil Carmody, k=5)
  52. 8558 0648552568 1345246630 7125519911 4111127838 7645072953 2397439653 9204210251 8056682963 (Dario Alpern, k=1157)
  53. 8732 3333978079 9868502954 3180338928 4613491040 4349430122 6400406675 5373479160 6843097037 (Phil Carmody, k=266)
  54. 9660 7740196540 9289932977 4580889082 3366336633 6633673027 1106533174 5923596343 7947225717 (Phil Carmody, k=2)
  55. 9807 1264119688 5243173990 3513388954 4504417563 7676587567 8957835267 3000449243 6749108827 (Dario Alpern, k=2557)