Known 12-digit prime factors of Googolplex + 10

  1. Alpertron
  2. Number Theory
  3. Known 12-digit prime factors of Googolplex + 10

This is a list of known 12-digit prime factors of googolplex + 10, i.e., 1010^100 + 10.

These numbers have the form 1 + 2ki piei, where pi is a prime factor of 10100 − 1 and ei is zero or one.

The list of prime factors of 10100 − 1 is: 3, 3, 11, 41, 101, 251, 271, 3541, 5051, 9091, 21401, 25601, 27961, 60101, 7019801, 18 2521213001, 1410 3673319201, 7887 5943472201 and 168058 8011350901.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 103868294641 (k=40)
  2. 104706279373 (k=2)
  3. 115499206703 (k=1)
  4. 115981820659 (k=1)
  5. 117721795129 (k=28)
  6. 119137120813 (k=954)
  7. 121338604927 (k=217)
  8. 124150405129 (k=9068)
  9. 124418296927 (k=7)
  10. 125038552651 (k=25)
  11. 128396156677 (k=86)
  12. 131012898613 (k=2)
  13. 131293893743 (k=11)
  14. 132969070543 (k=7)
  15. 133538318167 (k=20032751)
  16. 135007692733 (k=26634)
  17. 141045155893 (k=34)
  18. 142527716173 (k=3214)
  19. 143054969437 (k=2)
  20. 144481544183 (k=1)
  21. 146138613877 (k=2)
  22. 149867229961 (k=3220)
  23. 167154471529 (k=1028)
  24. 169900990117 (k=26)
  25. 174491825797 (k=2)
  26. 181702841491 (k=1455)
  27. 181919579557 (k=26)
  28. 183411838171 (k=926322415)
  29. 191218066969 (k=126970828)
  30. 192131500889 (k=4)
  31. 192154699573 (k=2)
  32. 197843591779 (k=28763)
  33. 198811881209 (k=4)
  34. 201465994259 (k=19)
  35. 206048382893 (k=37314086)
  36. 212693902567 (k=1)
  37. 235821273007 (k=24611)
  38. 248249112607 (k=45807)
  39. 271192615961 (k=23380)
  40. 272242016047 (k=1547)
  41. 277921155601 (k=200)
  42. 280763960797 (k=2)
  43. 291199610813 (k=46)
  44. 295439863357 (k=69722)
  45. 306117279757 (k=16362)
  46. 306917537299 (k=73)
  47. 308082462613 (k=2)
  48. 319313387893 (k=2)
  49. 336835582411 (k=271085)
  50. 355917950303 (k=1)
  51. 358106485567 (k=1)
  52. 367638538213 (k=114)
  53. 381207193853 (k=766)
  54. 382815337207 (k=1)
  55. 391910938663 (k=227)
  56. 393038695837 (k=2)
  57. 404035500691 (k=5)
  58. 404340606739 (k=1)
  59. 410126452693 (k=2)
  60. 411954680413 (k=1854)
  61. 435424893487 (k=31)
  62. 437887772299 (k=1)
  63. 442472024677 (k=146)
  64. 472880798303 (k=1)
  65. 480386748931 (k=5)
  66. 481778715169 (k=7558736)
  67. 506294036197 (k=61646)
  68. 584225521219 (k=1)
  69. 586931701357 (k=182)
  70. 608321915059 (k=13)
  71. 660861397891 (k=405)
  72. 684756582877 (k=2)
  73. 687847478407 (k=1)
  74. 688924871659 (k=1)
  75. 714152341453 (k=4742)
  76. 747781810687 (k=27)
  77. 757013684893 (k=2)
  78. 833754519281 (k=40)
  79. 867464300881 (k=6360)
  80. 875775544597 (k=2)
  81. 880069813237 (k=222)
  82. 901384567207 (k=1)
  83. 932081393449 (k=56396)
  84. 987014682601 (k=100)

Phil Carmody is organizing a distributed computing project in order to find more factors of Googolplex + 10. If you like these pages I would appreciate that you donate some idle cycles of your computer. You will be cited as the discoverer of the factors you find.