Factores primos conocidos de gúgolduplex - 1 con 72 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 72 digitos
Esta es una lista de factores primos conocidos de
72 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 10 2844034832 5753776346 8557390983 4406561420 9916020987 4145928806 4000000001 (Phil Carmody, k=1)
- 11 0203221602 5207456144 8409895092 4817472696 3043212890 6250000000 0000000001 (Dario Alpern, k=26021)
- 12 3405770864 3376827239 9902343750 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=424019)
- +129694419029057750551385771184564274499075700947656757821537291527196801 ()
(k=40529505946580547047308053495176335780961156546142736819230403602249)
- 13 2463116864 3570863934 7501919586 6715651110 2371835031 7899956302 6432000001 (Phil Carmody, k=161)
- 13 4935020469 1290855407 7148437500 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1159083)
- 15 8535832829 9520000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=2307)
- 16 7772160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 17 2053567411 0297563732 5300795055 2273541688 9190673828 1250000000 0000000001 (Phil Carmody, k=13)
- 17 2543658669 7640946858 6889655692 5636311277 7243042596 6387906310 5594982401 (Phil Carmody, k=1)
- 18 1346365875 3566853931 7157410550 8625507354 7363281250 0000000000 0000000001 (Dario Alpern, k=13381)
- 19 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 23 2830643653 8696289062 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 23 7684487542 7930127806 3185100800 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 40 9220458452 6528170970 3175316055 9245503661 1120332800 0000000000 0000000001 (Phil Carmody, k=7)
- 40 9600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 41 1047335499 3164457447 8635920145 4599278231 0277120000 0000000000 0000000001 (Phil Carmody, k=9)
- 41 7460667426 2001413338 5190486929 5718400000 0000000000 0000000000 0000000001 (Phil Carmody, k=201)
- 57 3856549958 6629494420 3978012353 6729661282 1519374847 4121093750 0000000001 (Phil Carmody, k=111)
- 60 1680837813 4154178555 2679000304 0105148102 1568179130 5541992187 5000000001 (Dario Alpern, k=58191)
- 64 8433342576 0269165039 0625000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=557)
- 68 9280000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1077)
- 75 8113700280 2759910260 3646424699 2014542676 5011618408 9816863352 0207953921 (Phil Carmody, k=703)
- 91 0949707031 2500000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=597)
- 96 6367641600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 96 9352280335 5793064899 3206101948 7719022436 0674619674 6826171875 0000000001 (Phil Carmody, k=3)