Factores primos conocidos de gúgolduplex - 1 con 330 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 330 digitos

Esta es una lista de factores primos conocidos de 330 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 1174554804 2397344148 0785293966 6178560026 2095664524 1397859655 4561984550 1840275475 2090012130 2833696290 6905682757 4968338012 6953125000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  2. 1235487282 0931063191 7737719785 0071851490 1481748537 3434536484 5780085007 4337232776 1322775382 0403890155 4410172683 0624837981 8994113707 5802865948 5427226964 5430789999 1631766358 0992589058 0974246941 1564419867 5317487234 0208652154 7737148957 0559539661 1576006539 0698412055 3107880790 4163570363 6536902649 8228777199 9835968017 5781250000 0000000001 (Phil Carmody, k=449)
  3. 1744060350 4673385348 7515800217 4897704241 8060223736 5518373890 0517620289 0562541781 5502235110 7574725387 0379380101 8276066319 6137300662 6646709459 3207137055 9755313057 7301290528 6447297432 8368687365 7625818293 5459523088 5394130382 3376074433 3267211914 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 1828779826 0516399715 4525367728 8545535123 0559917164 7785794420 1349164212 2174507811 1308071683 4976275247 4386928869 6539844517 1552866179 6542700018 0166766945 6065987144 8224278017 3641761352 9343524723 2418650042 9732404882 0883035659 7900390625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 2427037108 8046459103 4873061826 0966043500 5601385570 8851252727 8552352453 0323849647 1768247102 3724593434 1104117817 4847064946 7280911566 6964415019 0742353813 2471993268 8139002932 9284569181 4380253414 2692178777 6396308985 5162730268 3897369206 5337672829 6279907226 5625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
  6. 2449096832 9863672929 4829864616 5419989216 6715078072 5620570288 0855234617 8028479096 9413782203 4882482995 7359936871 0030699247 6816958514 9735212326 0498046875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=403)
  7. 2519203540 3376582819 2161209585 6335173588 9083247611 3574605795 6306613860 8129079655 3626335260 3503982419 1039847426 5100365412 7894847927 8094521738 3221449747 8318497755 8973893723 7221064696 6486629374 5958126622 1181932684 3823103848 6140157701 2283304114 0365104160 2388470259 1128371731 0501955769 6037518779 1640883006 0390755534 1720581054 6875000001 (Phil Carmody, k=3)
  8. 7646841173 4357709297 3862590928 5016666837 3018649245 7017315465 2096253581 9272626791 7252683139 8656876892 5167205452 4533450603 4851074218 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)