Factores primos conocidos de gúgolduplex - 1 con 32 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 32 digitos

Esta es una lista de factores primos conocidos de 32 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 10 3892062623 1321947013 1200000001 (Phil Carmody, k=11)
  2. 10 5664000000 0000000000 0000000001 (Phil Carmody, k=1651)
  3. 11 1709097865 3423484078 7960463361 (Dario Alpern, k=231009)
  4. 11 3378098628 8196812800 0000000001 (Dario Alpern, k=5155839)
  5. 12 9171456000 0000000000 0000000001 (Phil Carmody, k=1971)
  6. 13 5333529090 4535944396 8000000001 (Dario Alpern, k=187813)
  7. 14 3552238122 4345600000 0000000001 (Phil Carmody, k=51)
  8. 15 9902343750 0000000000 0000000001 (Dario Alpern, k=8187)
  9. 16 3709046319 1270828247 0703125001 (Phil Carmody, k=9)
  10. 17 1798691840 0000000000 0000000001 (Phil Carmody, k=1)
  11. 19 2000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 19 3045176731 3704576614 4000000001 (Phil Carmody, k=2093)
  13. 20 7768000000 0000000000 0000000001 (Dario Alpern, k=25971)
  14. 20 8066302784 5169152000 0000000001 (Phil Carmody, k=231)
  15. 20 9808349609 3750000000 0000000001 (Phil Carmody, k=11)
  16. 23 9428125000 0000000000 0000000001 (Dario Alpern, k=76617)
  17. 23 9807672958 2241710080 0000000001 (Phil Carmody, k=13)
  18. 24 4140625000 0000000000 0000000001 (Phil Carmody, k=1)
  19. 28 7327775621 1200000000 0000000001 (Dario Alpern, k=1712607)
  20. 29 0824449537 0771496960 0000000001 (Phil Carmody, k=1009)
  21. 34 5876451382 0540928000 0000000001 (Phil Carmody, k=3)
  22. 40 9272615797 8177070617 6757812501 (Phil Carmody, k=9)
  23. 41 7368815697 9200000000 0000000001 (Dario Alpern, k=77741)
  24. 42 8877000000 0000000000 0000000001 (Dario Alpern, k=428877)
  25. 45 7763671875 0000000000 0000000001 (Phil Carmody, k=3)
  26. 46 4970278755 5888312521 1105853441 (Phil Carmody, k=939)
  27. 49 7664000000 0000000000 0000000001 (Phil Carmody, k=243)
  28. 56 8434188608 0801486968 9941406251 (Phil Carmody, k=1)
  29. 70 2601297920 0000000000 0000000001 (Dario Alpern, k=2144169)
  30. 71 5255737304 6875000000 0000000001 (Phil Carmody, k=3)
  31. 71 8146504184 7718120521 7280000001 (Dario Alpern, k=97327)
  32. 72 1228125000 0000000000 0000000001 (Dario Alpern, k=230793)
  33. 72 5355491768 7775048237 0560000001 (Phil Carmody, k=3)
  34. 75 5578637259 1432341913 6000000001 (Phil Carmody, k=1)
  35. 85 9157105233 0223665152 0000000001 (Phil Carmody, k=1863)
  36. 92 9361723828 7461780553 7280000001 (Phil Carmody, k=123)