Factores primos conocidos de gúgolduplex - 1 con 300 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 300 digitos
Esta es una lista de factores primos conocidos de
300 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 1009352199 8766632155 9202987396 4796699874 1825425934 9038687464 5343075954 1669946086 6240041993 9468323686 4792639649 7995624193 2898802189 4109837698 2069481644 3662489291 4551310241 2223815917 9687500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=187)
- 1094764425 2537633366 5916373694 5246977562 7046420910 2794668520 9596788899 2833483285 9491143608 4657907485 9619140625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1596414183 5392020919 7352740333 0497840928 4636383421 0615740443 9312522759 8142796204 8847774667 5180108925 8870137981 7498917533 6801676657 4916322213 2314691057 4496903906 5274606104 8244355807 3850642387 0148864807 5610399246 2158203125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=333)
- 1788139343 2617187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2800271328 6706077314 6758998236 8598798922 9584921916 3481798940 5803544350 8272888423 9169150595 7775667187 7199040221 6118897020 6240018503 1155222662 3727920932 7454970734 9052596327 9651477932 9299926757 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 3284293275 7612900099 7749121083 5740932688 1139262730 8384005562 8790366697 8500449857 8473430825 3973722457 8857421875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4437342591 8681914054 4097317971 5672541911 7861974882 5440183281 8984985351 5625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 4807131171 2908981159 0832889896 5740809324 3639532700 9713917913 8620357185 4167639356 4926051645 9209278135 0470952392 0025750209 9056239330 8209720999 0024566650 3906250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)
- 7090927578 4594450796 2285882559 7568080267 7353370034 0124295855 0307637481 1061358995 9386477459 8895900751 1744217697 2818811194 9531560789 1705633218 7924447751 4679855961 4918187326 6138196734 3820263381 5077346362 9329795216 5039394415 5808941079 9587938439 4033180093 8803308298 4748034505 1735639572 1435546875 0000000001 (Phil Carmody, k=3)
- 7934344479 2729556766 0868166856 9658406752 5715151194 8809470392 3683856866 0133951138 8750952964 9485284861 6201324016 8278116470 9012955427 1697998046 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
- 7977293525 7668757145 7571617879 7264090301 2022541288 2639832836 9096092166 2444028870 4309787142 3757888345 0712244909 4421162594 3223005887 8168837371 1415003720 4014837956 6782960742 4405471326 1797796304 1962014658 2996019618 5669318717 5285058714 9536430744 3287327605 6153721835 7841538818 3202594518 6614990234 3750000001 (Phil Carmody, k=27)
- 8313559472 7676189993 8777307184 6884727663 5400066509 3421687727 2977570613 2860941450 6595667628 7144508035 1534475532 3379644096 3487839326 2624740600 5859375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=171)
- 8686485307 7996358499 5674351824 2316106149 3898603414 0826837629 6849521295 5832081736 6567911932 4067869456 4849138259 8876953125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)