Factores primos conocidos de gúgolduplex - 1 con 232 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 232 digitos

Esta es una lista de factores primos conocidos de 232 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 13 4044153563 5753058934 4287157082 2804558326 0718945976 2696637505 6271984395 6791593863 7414400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
  2. 14 8831896796 3327831024 8587736959 9035473873 5367476563 6397342819 2239067951 2713371280 2976714731 9268738556 1455991303 3204650596 0363891318 8206061022 3561525344 8486328125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=321)
  3. 17 8813934326 1718750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 19 0923801162 8938592256 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=207)
  5. 19 3428131138 3406679529 8816000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  6. 21 2021647773 4061195499 9570008915 0221899298 0676250742 7497459274 4155114373 1200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 21 6840434497 1008868014 9056017398 8342285156 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 28 0900581281 5318996293 5096483152 0594194901 4003276509 9898022932 7231622996 6004399789 6919810585 2355878006 5832274378 8520117835 0520245194 8958722767 3615402845 1735625444 7249103467 1374543810 7165397489 9504646600 6897389888 7634277343 7500000001 (Phil Carmody, k=3)
  9. 28 5962078142 6167794617 5160491501 0008256537 3327270208 3922922611 2365722656 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
  10. 28 6616006581 5798501619 7685701890 3641772114 5750831437 9901773918 2245127672 9107403389 1430708038 4097700390 1548822682 6287106816 8096011495 3534554854 6269554292 7744063455 0089271215 2563035488 1286621093 7500000000 0000000000 0000000000 0000000001 (Phil Carmody, k=87)
  11. 34 4383110592 4670433502 1578238932 9788423437 1748355725 1606701710 1448755056 4808771014 2135620117 1875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 40 9867279650 9600631233 5674640101 4166227115 9080527359 0577106081 6010392738 0805670441 6920298514 0914532347 7654505645 2812807248 8977196030 6461551226 6755104064 9414062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=221)
  13. 43 1359146674 4102367146 7224139231 4090778194 3107606491 5969765776 3987456000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  14. 50 7748844238 1442533765 9392000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  15. 57 9339448794 3110698943 7345834367 8207072002 8059440664 9470329284 6679687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=459)
  16. 67 2623262875 9121940433 9019997915 9743014525 7321007275 7044339277 6267099719 6892130887 1358633041 3818359375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  17. 70 5776931258 7204128089 8541085718 8183624637 9261527394 2180557411 9023605266 1356641103 3642844508 0514393339 3992483615 8752441406 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=169)
  18. 71 8529223783 8577928321 4447498499 3244316851 2303210986 1123397212 8718026838 0231139312 2322942428 8894380449 8375348563 1965201126 9992232376 4179649119 2991425123 1821253895 7595825195 3125000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  19. 76 8981081066 2684975663 3824737454 0255796929 3186088909 3461514301 9631278940 6606596065 8423250944 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=151)
  20. 94 9218750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=243)
  21. 95 4860613906 7903529383 3391644189 6012992875 8095309076 1748569083 5634866234 2640640810 2346752000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)