Factores primos conocidos de gúgolduplex - 1 con 212 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 212 digitos
Esta es una lista de factores primos conocidos de
212 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 11 1276184520 6226415719 5205784642 9185401026 9433627337 3007359117 1767527440 2028688807 6991936248 1696253126 0901675740 8003477081 1487021546 7817615717 6494598388 6718750000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 17 4840200300 3156163827 5157161411 6701597816 6155146925 5691266311 6876501385 6684687648 3584000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 23 4259137278 4658999208 7125416707 8488520918 8652715826 6882315615 1675753849 4727837212 1109069824 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
- 26 1491587920 4116977327 8407307220 7881304571 7551535234 1153095799 7439597181 3876716747 5914920222 9443845266 1962040622 5435542061 9284414044 5696000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=921)
- 26 6297775742 3317017923 5214615157 0401231748 3782112486 1413483757 1330411777 6525240186 5246272930 2556803072 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=487)
- 26 8220901489 2578125000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 32 4518553658 4267267831 5602057625 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 45 4677844025 0141129194 0344353841 5648499932 1414686507 2696893153 2088635667 2621881946 5457212608 7291220906 9826113536 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=121)
- 58 0284393415 0220038589 6448000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 58 2076609134 6740722656 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 91 5921165845 5435936727 7955247442 4934400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=441)