Factores primos conocidos de gúgolduplex - 1 con 210 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 210 digitos
Esta es una lista de factores primos conocidos de
210 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 1020847100 7628153903 9012382229 5304634368 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1544267276 8404086754 4168565204 1506690582 5138743703 8684815592 2318131075 8238725233 7777105107 9655698816 7573000122 2124391739 3147069027 4534130144 6908779926 1464138272 9256946504 3925447389 4834518432 6171875000 0000000001 (Phil Carmody, k=3)
- 1623993739 4857406616 2109375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=279)
- 1637090463 1912708282 4707031250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 1640438043 5872589432 7937667033 8216024014 8770731699 0932731932 7954807464 7493995319 4241763488 2767290368 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1770805724 2771246819 7569251060 4858398437 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=319)
- 1856910058 9280704123 4868633600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1858260738 1073123903 1952227027 1921717248 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=699)
- 1914577462 5343696541 6814974328 9128459557 5128343819 8284260337 3571604480 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=909)
- 2345207408 8093994027 1484846676 0547893678 3460813781 0338567628 2423420705 3598395139 7559137712 7490750178 9408104979 8306168832 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
- 2374642455 0621485389 5995184099 8482485272 1383574008 3187971543 8734537280 9789440000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 2803091598 5482925902 5410111797 4689751926 0291140846 0775404579 1053292723 2296863482 5414657670 8658921294 7474617572 5810570789 0649682667 5720512866 9738769531 2500000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=369)
- 3291384182 3024050223 1246230422 2287897892 2635589618 4506022450 4777579568 3264732360 8398437500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 5583641188 3003478351 3838192448 0199813842 7734375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=103)
- 5885453550 1642316978 7966424981 7647751377 1001558813 6624137968 6792337122 5472806145 2624388039 1120910644 5312500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 5986310706 5073783529 6229307480 5895248510 6996960296 9600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 6632577450 3125334722 9671823063 0706870617 0882798870 6410369820 4265089478 5048287439 8052211776 2666717357 9985003217 5064294164 2492235991 1669350607 2550690078 0601426959 0377807617 1875000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 8251275723 4563305623 6821576087 9893757212 7539200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)
- 9436017600 1374342869 4450230110 5079035471 1975084609 8199354508 4715312792 3739737446 0955859177 2943318339 6310184417 4734669850 1429807653 9507320603 6613555625 0810623168 9453125000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=521)