Factores primos conocidos de gúgolduplex - 1 con 199 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 199 digitos

Esta es una lista de factores primos conocidos de 199 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 105709711 8173366823 1572664808 4819316864 0136718750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  2. 183670992 3159824231 2011508394 0975887159 1664932456 3867523574 2454106002 6967898011 2075805664 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 202400756 1340689591 9509781434 0869035731 8846508860 5880737304 6875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=783)
  4. 287076657 6277703150 7389091730 9187804202 6034878047 3413228088 2392091306 3311449180 8992308610 4484275814 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  5. 349764096 6954743409 0256290398 9163066367 5533806923 7833663056 4243658891 8542383908 0613106489 1815185546 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  6. 353409685 5390132888 2445439724 6688230893 5964829288 4230613708 4960937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  7. 359178642 3904427011 7773758448 8353714910 6419817617 8176000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 429240425 6684489318 1496961909 6560367040 4322446164 3353324313 4081948488 6140877177 7276654208 9171230146 0344762030 2919341064 8124096655 9021392296 1489920000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  9. 476456032 8305439407 2593140663 2298603653 9077758789 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  10. 478745438 6405056500 0665328747 1504964448 5017250339 0633808487 2670331010 5124647594 0207516256 4186806020 9971200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=171)
  11. 573374653 9975178779 0270522382 5521735199 1412472920 7028093439 7209846730 7190221212 0201750463 8277531421 6386560000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  12. 584808439 5340880352 1444642726 8067224714 7861144941 1354195060 3973873512 5865787267 6849365234 3750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=199)
  13. 629145600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  14. 630432099 1423116673 9646464160 2297820881 2758283274 4714668717 2694467931 5483439553 6978262826 0078158650 2529060478 4490905600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  15. 848714241 9653663964 0303578238 6430059869 4438564434 9850080990 1439387587 6631036555 2363155864 3073964986 9727790166 2320456701 9042620781 9962178776 0924998208 5123276800 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=633)
  16. 858306884 7656250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)