Factores primos conocidos de gúgolduplex - 1 con 197 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 197 digitos

Esta es una lista de factores primos conocidos de 197 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 1162012 4451391088 6534516362 7401355343 4483676067 7315058077 3796710443 2914299075 7853758334 0408976062 0241461564 2738773637 2019200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  2. 1920852 8101444244 3847656250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  3. 2284865 0316807517 9803622735 0047590575 4612573817 8490856269 4144000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=91)
  4. 2291665 4733762968 4705200139 9460550431 1829019428 7417828196 5658005523 6789622337 5379445632 2048000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  5. 2306105 8000816769 5532625057 3715316657 9365540523 9311102657 9510661742 4065636496 3491080476 9612285843 5663575680 1825039091 6640432956 4143304301 0160717111 3563786446 4875690373 4465595334 7682952880 8593750001 (Phil Carmody, k=7)
  6. 2434970 2177296608 1331200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  7. 3143624 2100313260 3941750369 7563014922 2400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=473)
  8. 3172006 2250569424 6334129099 3832153421 4451202734 6453923097 9846643384 3200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=753)
  9. 3786532 3450608566 6597629711 3357373902 4313908885 2331042289 7338867187 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 3794461 2608560269 5798399386 8108105768 6150428802 1497419869 3884084875 0892416964 2712503658 6067923965 7350251735 5702363407 6666429440 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=287)
  11. 4888886 3432027666 0704426965 2182507586 5235241447 9824700152 6737078450 5151194320 0809484015 3702400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 5254869 2412180640 1596398593 7337185492 3009822820 3693414408 9006064586 7165600719 7725557489 3206357955 9326171875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  13. 6943633 9140868528 3408980840 9617181169 0240812658 3458475659 2089118293 7122686590 1816004296 8218857846 1950680264 5662259416 9698636790 1445191819 2207813262 9394531250 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)