Factores primos conocidos de gúgolduplex - 1 con 188 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 188 digitos
Esta es una lista de factores primos conocidos de
188 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 10314257 2102440383 3248479724 7236621474 1933682633 6506468243 8654594602 2282250605 0560887749 1364521777 4727120681 8042512748 2046560111 6443684946 5198274150 4000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=413)
- 10750774 7624534602 1067572294 6728532534 9838983867 2631776751 9947684626 2009816647 7253782821 1967703714 1557248000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 11116040 5667823547 6066281456 0834039153 9139185279 0149414778 7928064759 6604454338 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 11850596 6328815793 7538109299 6982903069 3580999931 2415147591 3237113309 8593615872 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=131)
- 15716035 6549901792 7118028800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 16384000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 16787206 0135582158 6919182719 1477263151 4162642503 4222045825 3572180056 6915746938 5037093780 9554863925 0531031130 7198389840 7779633998 8708496093 7500000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=843)
- 20859248 3976651375 2338888384 9312032369 1670363511 3918720651 4078201388 8645095765 6787131798 9130240000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 23141838 0645461207 2344198819 9994837019 6950002524 3184027621 9777411249 1925390690 8217190279 4810998747 5130587195 0490811173 0401287786 6625785827 6367187500 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=119)
- 24923024 9209671726 1694638238 0256460800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 25193917 2494418997 4373901564 3041498409 6703038624 9073314536 4231206626 2904517603 3207378662 7842181788 8000395570 9954771701 2689966289 9107680782 5844768501 2844917588 7544320000 0000000000 0000000001 (Phil Carmody, k=7)
- 26214400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 26274346 2060903200 7981992968 6685927461 5049114101 8467072044 5030322933 5828003598 8627787446 6031789779 6630859375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 30994917 3185165933 3168738994 1836329472 5513293734 7026972541 9915141660 2668847067 6219155096 3686710904 9880224582 9033283442 2368525897 9188523154 7370449561 1904000000 0000000000 0000000000 0000000001 (Phil Carmody, k=303)
- 35889985 2698093036 2408960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 45776367 1875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 61567077 6563021844 3390982695 7819632723 6948104766 0026874520 0506138851 8214786460 4284676354 4284203542 6746227464 0616482635 6389869820 6402604485 8368000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=517)
- 63759080 1267791767 2702969603 9691183973 2519183553 8146761494 6606916985 4942622066 5736764203 7570476531 9824218750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=91)
- 68962299 3389649986 2612561622 1763913262 8432604982 6209792000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 76214564 2166990290 8646477611 7997224261 4403843424 0652223777 2386709603 8022172794 3408496841 0719323534 4521442121 8558121637 9283397843 7326241529 8560000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 99488661 7546880020 8445077345 9460603059 2563241983 0596155547 3063976342 1775724311 5970783176 6440000760 3699775048 2625964412 4637383539 8675040259 1088260351 1709021404 3855667114 2578125000 0000000001 (Phil Carmody, k=9)