Factores primos conocidos de gúgolduplex - 1 con 169 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 169 digitos
Esta es una lista de factores primos conocidos de
169 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 100100831 9285861195 1753448179 6013096359 8507608822 1764508649 1811490613 3861699406 0511459865 5265811571 5715857402 6159583991 6491383919 7347481680 8043946277 4249895776 7475200001 (Phil Carmody, k=89)
- 103520924 0519958611 1449052296 5542554198 3293509561 2760263855 3419472358 3162334179 5193482539 6165251731 8725585937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=591)
- 114596332 4233889579 7729492187 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 145729251 2615389917 7992582203 9806012455 9323457252 2291200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=779)
- 147420407 2195914590 7193572581 9854253551 4422351725 1720423344 5558603344 6938434433 1453461432 5202252295 6070886083 9963921269 1397288462 1064372122 0943102544 6589689205 0545049601 (Phil Carmody, k=1)
- 149196970 9229359926 4661467444 4046252030 1368452392 0431523213 9193067947 8491037600 1265991680 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 188894659 3147858085 4784000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 191646529 3854688967 9351644356 5810529616 8749057242 7236550347 9226184348 1019964763 0889499862 2762927984 2892151909 1953097649 8816475000 7383683758 7226033308 0566595966 5708564481 (Phil Carmody, k=13)
- 201948391 7365790221 8540251271 2393274796 3408473879 0988922119 1406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 210194769 6487225606 3855943749 3487419692 0392912814 7736576356 0242583468 6624028790 9022299572 8254318237 3046875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 237389193 6439949686 8683105673 9048928855 5241458404 9862415699 4499770725 2057661202 7897582797 3294285340 0023256908 2470407417 7731172312 6331344246 8643188476 5625000000 0000000001 (Phil Carmody, k=1)
- 296427748 4475294602 8434172162 2241044104 3711607440 3984394101 1415060257 6118782361 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 327067434 2474151106 4880062583 1270231780 4470544911 6825847418 0169859461 5576735608 3027052857 7311056428 6590393924 9766400000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 333747974 3626422003 7422214158 8992517906 6725816182 2699530422 5251222221 8321532250 8594108782 6083840000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 373380916 6716685024 2864384322 6807454435 4151301232 7002798606 6996887381 9300421230 0647103668 9387542817 0174179953 7330734892 7482962608 3374023437 5000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 388938454 8663213566 9650400336 1257765036 8907605450 7294581881 9788424356 1771272114 6507399655 1445357101 0598104118 4719515513 2794752717 0181274414 0625000000 0000000000 0000000001 (Phil Carmody, k=1)
- 459177480 7899560578 0028770985 2439717897 9162331140 9668808935 6135265006 7419745028 0189514160 1562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 511021648 2170049774 7835847966 7200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
- 555111512 3125782702 1181583404 5410156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 597456389 4654136287 7461884322 6193648077 5051796783 3723273364 1892660293 4092210502 9250223983 3085187741 3474795520 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=521)
- 614400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 723420833 7658026383 3744317623 8636749461 2640130057 4560082353 0666901951 4517246887 8682556592 8439687051 1652096899 0203314176 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=459)
- 912592117 3978497666 4826366840 7401416151 0578403623 3944028499 0921310762 8222939748 4437016202 4448000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 985050154 9098619803 0697600250 3590345126 9934817616 3616669870 7335106143 0442874302 6528535665 6372122891 0201656997 5767040000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)