Factores primos conocidos de gúgolduplex - 1 con 160 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 160 digitos
Esta es una lista de factores primos conocidos de
160 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 1090858757 5630828073 9498750654 2243989015 7216366844 9721996012 1583426371 2167739868 1640625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
- 1185710993 7901178411 3736688648 8964176417 4846429761 5937576404 5660241030 4475129446 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1424335161 8639698121 2098634043 4293573133 1448750429 9174494196 6998624351 2345967216 7385496783 9765712040 0139541449 4822444506 6387033875 7988065481 1859130859 3750000001 (Phil Carmody, k=3)
- 1450710983 5375550096 4741120000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2346366387 7399544924 2545437468 6023072308 8890186036 6884110162 3252651308 7052628707 2094032800 2179208099 8457555751 8263505889 9406929492 0906497406 2588857606 4716800001 (Phil Carmody, k=7)
- 2525476144 3447583179 0158240418 8418448438 5392821275 3178449145 8743957537 0808597654 1042327880 8593750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 2538454920 1545546199 7535478284 5840792941 0739825828 3988205305 1373853718 2383474355 6796872656 8088506693 8147502541 7608969588 8343040000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3259257562 1351777380 2951310145 5005057682 3494298654 9800101782 4718967010 0796213387 2989343580 1600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3286372009 0240621342 0836114620 8040310153 3093728445 6923889274 5314918115 9516090891 9774383787 0217230805 5764584294 4226205027 4700115021 7507534767 3907200000 0000000001 (Phil Carmody, k=539)
- 3629469171 4368104120 0562088312 3302953132 9155243884 2438669401 3100011515 7580464644 2259901717 8122629939 2000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=531)
- 4159478531 9988777236 6105739264 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 4382937246 8764421349 0487249764 9884265149 5938894451 0222336000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=143)
- 4634268928 6817862714 1594692434 4981360232 3070910182 7784479610 2726832032 2036743164 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=77)
- 4764560328 3054394072 5931406632 2986036539 0777587890 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 5371090953 2256957352 7812827998 5665073084 9264286113 5534835701 0950446122 5677353604 5575700480 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 5621376105 4898008585 0415942358 0678635298 8117735030 0742003762 9754570772 8725417282 0614760640 7608676851 2550723587 2899247652 8674160363 1526231765 7470703125 0000000001 (Phil Carmody, k=37)
- 7800016274 7683052048 7671066746 8955640079 3116752723 2219072175 2122044563 2934570312 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)
- 8123055744 4945747839 2113530510 6690537411 4367442650 8762256976 4396331898 3627117938 1749992501 7883221420 2072008133 6348702684 2697728000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 8407790785 9489024255 4237749973 9496787681 5716512590 9463054240 9703338746 4961151636 0891982913 0172729492 1875000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 9173994463 9602860464 4328358120 8347763186 2599566731 2449495035 5357547691 5043539392 3228007421 2440502746 2184960000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)