Factores primos conocidos de gúgolduplex - 1 con 154 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 154 digitos

Esta es una lista de factores primos conocidos de 154 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 1085 5508365998 3933209597 7984456449 1361244061 0624038028 7869914850 0741855903 7440000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 1125 8999068426 2400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 1262 1774483536 1888865876 5704452457 9674771302 9617443680 7632446289 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 1282 9270608442 5391014745 7504232711 3018312945 0245042337 5021729996 2369913476 7382257216 1839161708 4853351116 1804199218 7500000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 1320 4077626846 7522789057 1764794110 5068585108 9841825108 0850841247 2444115063 5041515110 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=87)
  6. 1447 5660719677 9843102496 5211122434 9937401711 9407653808 5937500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  7. 1761 4069370803 7492091711 0447592002 7705317619 1168123990 3030468228 6491567688 3595633259 7774248788 5765272739 5123200000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 2363 5221791210 6956303252 1565408363 9458498284 0934400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=207)
  9. 2438 5439200117 6111779298 1375464255 2127564667 6510595209 2244399618 2510448116 2045003275 9370975144 6767624563 5825998902 3026967008 5884640021 7088000000 0000000001 (Phil Carmody, k=671)
  10. 3583 5915874844 8673689190 7648909510 8449946327 9557543925 5839982561 5420669938 8825751260 9403989234 5713852416 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 4695 2663979027 4202823638 9160156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=413)
  12. 4888 1231587580 5329818316 6085460527 7548174762 2693643978 1949460849 6624353001 5028717627 9562117997 5569248199 4628906250 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=893)
  13. 6230 7562302417 9315423659 5595064115 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  14. 8004 9746220694 1662793334 9433209336 8104220879 5777059288 9775044005 2760076282 5220770335 1900595168 4272774512 9983311551 7229465600 0000000000 0000000000 0000000001 (Phil Carmody, k=31)