Factores primos conocidos de gúgolduplex - 1 con 147 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 147 digitos
Esta es una lista de factores primos conocidos de
147 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 1208925 8196146291 7470617600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1471195 7192312533 0402401314 6064296816 2739895572 9625808896 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1490116 1193847656 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1803040 5044555664 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=121)
- 2457600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2478959 8829634322 4606968240 5122891399 3565175611 1605457231 7432982279 0217171361 6754684445 9539148932 3181784670 4509383759 3640960000 0000000000 0000000001 (Phil Carmody, k=3)
- 2637188 3436372730 9184115320 7596203638 7840000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 3137500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=251)
- 3194017 9125724131 8992969361 1633498357 2309282665 1531502416 1915721283 8042741558 6748311063 0637803285 4361234315 6736000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 3308722 4502121106 9948563476 8279851414 2632484436 0351562500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4651767 8354918840 9951567237 0483229019 8633047083 9883558580 1537274756 0914439257 4670928762 2724568086 8195888801 3828010353 8774621450 4231337984 0000000001 (Phil Carmody, k=1)
- 5393217 5938457404 4016158467 2296157805 2490949630 7373046875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=163)
- 6313690 3608618957 9475395601 0471046121 0963482053 1882946122 8646859893 8427021494 1352605819 7021484375 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 6481447 9977385880 5579776000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=549)
- 6640738 3064737146 5829564840 5328392982 4829101562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
- 6749719 0335100758 6036826859 1495784682 1445462906 4702275303 2651480718 2143334668 2413807256 0194719580 1600000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=79)
- 7180839 9539268606 5157450128 3792772404 9256939520 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=161)
- 7642640 6381232146 5908630366 6048715082 9749034447 1068338533 9808842538 5988805497 0528870403 2235901267 0358252745 9279738479 8359416890 8894062042 2363281251 (Phil Carmody, k=393)