Factores primos conocidos de gúgolduplex - 1 con 146 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 146 digitos

Esta es una lista de factores primos conocidos de 146 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 108307 4099265943 3045228180 4068089207 1654858232 5686783496 7596858617 7586448361 5725089999 9000238442 9522694293 4417817982 7024569303 0400000000 0000000001 (Phil Carmody, k=1)
  2. 136112 9467683753 8538534984 2972707284 5824000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 138334 6483395566 3019700072 1207989393 2354934804 6071827411 6516113281 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=137)
  4. 153161 2823434350 1063759326 1926267060 5528974728 4492244211 4662400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=61)
  5. 161759 6800029038 3876800209 0522117784 0418228665 3524343488 6621661495 2960000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 162363 0523681640 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=681)
  7. 196686 2564266953 0410134375 6187650000 2125222550 3447198830 1155895249 8496990224 6156763439 8184433012 4013212836 8902757456 5876617854 3206400000 0000000001 (Phil Carmody, k=227)
  8. 212676 4793255865 3966460912 9644855132 1600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 344383 1105924670 4335021578 2389329788 4234371748 3557251606 7017101448 7550564808 7710142135 6201171875 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 375118 5582540655 3378494381 9955767588 1617768916 8528210163 9035965836 3312140381 7221463695 3896509170 5211316472 9435090754 9366785473 7621215095 0297600001 (Phil Carmody, k=63)
  11. 376669 0272105108 2866429851 1988329456 0881344099 7640743944 8299954709 5758430259 5932967960 8345031738 2812500000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  12. 400606 6085123109 9739739912 3462095497 9879974833 6142513419 3384382077 0868624410 2780902621 6447988717 8140916047 2420261100 9786778595 2985286712 6464843751 (Phil Carmody, k=103)
  13. 504870 9793414475 5546350628 1780983186 9908521184 6977472305 2978515625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  14. 567907 4689022467 7187052303 6008448000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  15. 585461 2773411762 1180811354 6179634088 5547309240 3328740388 2153051119 4148663060 4887414658 5528959667 1370833114 1674534592 3118293285 3698730468 7500000001 (Phil Carmody, k=147)
  16. 612645 1293737400 4255037304 7705068242 2115898913 7968976845 8649600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=61)
  17. 688766 2211849340 8670043156 4778659576 8468743496 7114503213 4034202897 5101129617 5420284271 2402343750 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  18. 872206 4691547282 6865918856 9465605441 2243696328 2478167233 7788239016 7671457360 7750799142 9260856516 2786729150 2592751941 3520241521 9543375872 0000000001 (Phil Carmody, k=3)
  19. 930459 5970494411 1103266494 2196241203 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  20. 957809 7130411805 3647396689 1968943239 7617119513 6475136000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)