Factores primos conocidos de gúgolduplex - 1 con 128 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 128 digitos

Esta es una lista de factores primos conocidos de 128 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 11042794 1548649020 5989560937 9643240723 9217743554 7261848826 0038758078 8736000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  2. 11707891 2292285771 4930625209 3140389790 6397184000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  3. 13847351 0742187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=363)
  4. 14678391 1423364576 7430925372 9933356421 0980159306 7699919192 0568572076 3064069663 0277164811 8739904804 3939495936 0000000000 0000000001 (Phil Carmody, k=1)
  5. 15211807 2027387528 1796043846 4512000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 15360000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 20505475 5448407367 9099220837 9227700300 1859634146 2386659149 1599435093 3093674941 4928022043 6034591129 6000000000 0000000000 0000000001 (Phil Carmody, k=3)
  8. 22618219 8744968504 8476508142 3788046777 1901749074 4590759277 3437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  9. 34844914 3727040986 5864955980 1013064853 0944000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  10. 39079830 1175942159 5545520744 0432168900 4786198246 5369036331 6934602670 6812534784 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  11. 39825461 1968490811 1897452055 1357649820 3505089977 0361204244 0431201512 4242094222 3681005372 7927235764 0273920000 0000000000 0000000001 (Phil Carmody, k=569)
  12. 40984251 2517324622 0595447898 7128281198 9393930227 1827502335 8860850088 8409884160 4055356558 5043095552 0000000000 0000000000 0000000001 (Phil Carmody, k=307)
  13. 42809446 5632684963 9270367825 3412030737 6308562803 2321372487 7412368384 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=813)
  14. 50084432 3776945776 0964237728 5293846811 8745513193 1297203227 3288688581 1261029467 8159360000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  15. 57220458 9843750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  16. 60949978 3350477100 3149414015 4909652604 7327216840 0123781448 2516359692 6008652847 4766453144 3113025103 8818727526 7250585600 0000000001 (Phil Carmody, k=99)
  17. 85558249 1511921208 4329429511 7714571424 2468579943 6361223317 9583656816 8494790821 4811354952 0242975391 8226432000 0000000000 0000000001 (Phil Carmody, k=191)
  18. 94167256 8026277071 6607462799 7082364022 0336024941 0185986207 4988677393 9607564898 3241990208 6257934570 3125000000 0000000000 0000000001 (Phil Carmody, k=21)