Factores primos conocidos de gúgolduplex - 1 con 103 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 103 digitos

Esta es una lista de factores primos conocidos de 103 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 112 9762949858 5592955350 8758544921 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=159)
  2. 160 1990276940 6825617962 6627962716 4085952028 3917674895 7746028120 5866664794 3354804125 1722156520 2432000001 (Phil Carmody, k=3)
  3. 213 0168801803 5855131181 0236773892 9765230047 3798352070 2464000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=139)
  4. 227 6565108077 0262549837 4442205881 1218721570 5145142260 0146696766 7662778459 2248537088 0000000000 0000000001 (Phil Carmody, k=3)
  5. 230 8127128047 9194951489 4684121910 5415868973 0560000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=207)
  6. 288 7466798277 8731513644 6313467552 6551407083 5044534558 7593216000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
  7. 289 4802230932 9048855892 7462521719 7696331749 6166410141 0098643960 0197828240 9984000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 300 9265538105 0560203999 6553528894 8935215783 8253365440 5506240436 8072748184 2041015625 0000000000 0000000001 (Phil Carmody, k=1)
  9. 339 2346364374 4979127999 3120142640 3550388769 0820011883 9959348390 6481829969 9200000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 394 6056475538 6848717212 2250654440 3825685217 6283242684 1326790428 7433651688 8433834537 8637313842 7734375001 (Phil Carmody, k=11)
  11. 433 4876068193 0521673019 9694029952 0236563894 7960284619 5250899189 7600000000 0000000000 0000000000 0000000001 (Phil Carmody, k=843)
  12. 437 1005007507 8904095687 8929035291 7539945415 3878673139 2281657792 1912534641 7117191208 9600000000 0000000001 (Phil Carmody, k=9)
  13. 452 3128485832 6638837332 4160190187 1400518358 7760015845 3279131187 5309106626 5600000000 0000000000 0000000001 (Phil Carmody, k=1)
  14. 462 2231866529 3660473343 4706220382 5564491443 9557169316 6857585310 9359741210 9375000000 0000000000 0000000001 (Phil Carmody, k=3)
  15. 493 0380657631 3237838233 0353301741 3935457540 2194313937 7981424331 6650390625 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  16. 594 1023255317 3173082238 3784624806 3509469914 6032442687 4668390085 1846433996 8000000000 0000000000 0000000001 (Phil Carmody, k=269)
  17. 633 3186975989 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  18. 635 1252232541 5214707093 7256405025 3356903222 4768000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=89)
  19. 715 9828544406 8905961881 1275908033 8688148265 5589395000 8486248346 9420080520 8167071236 7696891541 1402752001 (Phil Carmody, k=419)
  20. 765 8777840710 7142891928 8662146104 0937547024 7222791548 4858314524 4154656253 9930139832 0906240000 0000000001 (Phil Carmody, k=77)
  21. 769 9487997885 9831771952 2431880570 9189712259 3968571732 6588232367 6123633049 4284629821 7773437500 0000000001 (Phil Carmody, k=131)
  22. 794 0933880509 0656787655 2344387164 3394231796 2646484375 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  23. 841 8249431026 0008088532 2463644579 0193218171 4475417600 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)