Factores primos conocidos de gúgolduplex - 1 con 101 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 101 digitos

Esta es una lista de factores primos conocidos de 101 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 1 0181236058 0086836135 9512179568 0959776719 8205531258 2815531641 2448883056 6406250000 0000000000 0000000001 (Phil Carmody, k=413)
  2. 1 3877787807 8144567552 9539585113 5253906250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 1 4648437500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 1 7999450129 1538822052 0185313944 2391693592 0715332031 2500000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
  5. 2 3050233721 7330932617 1875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=99)
  6. 2 3211375736 6008801543 5857920000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 2 3555211264 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=351)
  8. 2 4923024920 9671726169 4638238025 6460800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  9. 2 5068233490 4402482984 5460864052 2136599346 3667030115 6823070146 5600000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  10. 3 2866822048 9911587228 0587358073 3989151809 8889673475 6710138469 7707544546 5743541717 5292968750 0000000001 (Phil Carmody, k=699)
  11. 4 1943040000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  12. 4 5917748078 9956057800 2877098524 3971789791 6233114096 6880893561 3526500674 1974502801 8951416015 6250000001 (Phil Carmody, k=1)
  13. 6 8821426964 4119025493 0120318022 0909416675 5676269531 2500000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  14. 7 5366400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
  15. 7 5436971143 9528605016 6538240000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  16. 7 6728835959 8724032056 9345371760 4858531936 4585062400 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  17. 7 9536518570 9396317487 9821070910 1046629812 5604413289 5293440000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=519)
  18. 8 3422040727 1219984222 9029577865 4643787941 5805127791 8275445699 6917724609 3750000000 0000000000 0000000001 (Phil Carmody, k=423)