Factores primos conocidos de gúgolduplex - 1 con 243 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 243 digitos

Esta es una lista de factores primos conocidos de 243 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 117 6956575385 0026432192 1051685143 7453019191 6458370064 7116800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 156 3145451683 2066355255 1396769331 5367291113 9046272742 1952000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
  3. 206 1819255425 0451523002 2422109423 5770049590 5152497688 1734685062 9218584206 9831206597 1324111129 5679419956 4171000573 5538897553 0525816378 3819391791 5622612576 4649946304 2950731420 0998635556 0613446868 9560890197 7539062500 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  4. 400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 438 6344553806 6888030122 2965652377 4143768101 0490986450 6057907908 7312508451 1934093524 5196054704 3589079423 0082127844 2519873956 8198735491 7330534931 3523038290 4410362243 6523437500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
  6. 724 6833664130 0919768064 9365539087 6725073664 4207789058 8292065043 4989260800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)