Factores primos conocidos de gúgolduplex - 1 con 208 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 208 digitos

Esta es una lista de factores primos conocidos de 208 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 11324626 6968296636 1990569478 1637715730 9384350787 1617021981 0096999627 8893750651 7143698770 7917475124 6562202000 8962245539 4216411839 5346583621 0610664386 1250737014 0014550941 0322119947 5228786468 5058593750 0000000001 (Phil Carmody, k=11)
  2. 11587056 7418090473 9605413517 8307658506 3302299449 8853361350 4846225827 9045045128 4414157271 3851928710 9375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=323)
  3. 17326313 1636582295 2968136842 4743301639 5514757311 5028952870 3805087025 7373050946 1928505533 6928841278 2545370980 0847946276 2591471417 2620815930 5414133882 7722762516 7142832651 7343521118 1640625000 0000000000 0000000001 (Phil Carmody, k=321)
  4. 19431379 2489625004 0711929169 1300899035 0110008199 8163311630 3332807879 3315571154 6088043589 1882812648 5097612314 1137883674 3093238972 6303718800 6071925849 8380668243 0440559983 2534790039 0625000000 0000000000 0000000001 (Phil Carmody, k=9)
  5. 26133685 7795280739 9398716985 0759798639 8208000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 29116681 6483114547 3724674964 7389775615 5813914640 5044395369 9858312529 2943253420 9228995140 7412530892 5050880000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  7. 32592575 6213517773 8029513101 4550050576 8234942986 5498001017 8247189670 1007962133 8729893435 8016000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 34639831 1365317458 3078238779 9362019698 5980833610 4555923698 8637406544 2220253922 7110815281 7863102116 8131393648 0514081850 4014532663 8594269752 5024414062 5000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=57)
  9. 48417185 2141295360 5604848447 5056472643 6819836155 4794086557 4862935137 1429128157 7239930585 0374002584 3394231844 7448901550 0800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 54330547 2419353181 3468639814 7844744361 6951298289 2528296223 9390689748 0581120000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=123)
  11. 54526065 7688763359 9005867843 2346184195 0120287947 3567008972 1679687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  12. 67208424 7699334985 8330195623 0684481852 2222340106 9641113281 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  13. 77634751 4353828160 6819559715 6006343696 2202381105 2286410477 3428257209 3966185575 1744511928 3370915908 1867269539 0691930001 1211276419 0720000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  14. 78545495 4447636248 4953235127 9780410287 6034481999 9119304178 4785874993 6840755474 5370336156 6144597311 2364349371 4504211005 6210686697 7667955024 4492023718 5743415236 0496874313 5779085662 3068975750 3569126129 1503906251 (Phil Carmody, k=1)
  15. 80035325 0864262858 9994180020 3416715541 5682203931 3293854426 9970977374 1223483537 0905443522 8330234984 8953884631 0531072000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)