Factores primos conocidos de gúgolduplex - 1 con 202 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 202 digitos
Esta es una lista de factores primos conocidos de
202 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 10 1099800001 8148992300 0130657632 3615026139 2915845271 4680413853 8434560000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 10 8307409926 5943304522 8180406808 9207165485 8232568678 3496759685 8617758644 8361572508 9999900023 8442952269 4293441781 7982702456 9303040000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 15 5306990378 2206135112 3446218221 0023710992 7575975823 1475524305 8741362244 0062833396 0098522862 7408725565 2013898232 8997948904 8536790044 5921939879 3625600000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=199)
- 20 2661983231 6723200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 22 8643692650 0970872593 9432835399 1672784321 1530272195 6671331716 0128811406 6518383022 5490523215 7970603356 4326365567 4364913785 0193531197 8724589568 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 23 9452428260 2951341184 9172299223 5809940427 9878411878 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 26 7567505381 3202865834 6982677877 1669208934 2259030189 6094112357 9573372837 9367446105 2445408054 4004212572 0557032663 0673675178 2425224533 7702400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=589)
- 29 1130317882 6855602557 3348933502 3788860825 8929144607 4039290035 5964535237 3195906904 1919731264 0934655700 2260771509 4737504204 2286571520 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 29 1167575618 6657415547 3585960862 6924455165 8630371093 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 30 6534039071 0537342645 6584634466 9153717557 2997854878 2507185868 7100891799 3375320065 7520210370 4214096069 3359375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 37 3066952146 7019718819 8400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=79)
- 37 9822709830 3919498989 2969078247 8286168838 6333447977 9865119119 9633160329 2257924463 6132475727 0856544003 7211053195 2651868436 9875700213 0150794982 9101562500 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 47 0546710507 8602190079 4769933924 1979904000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=177)
- 67 6380263838 8639696321 7041187532 9063884196 5740855961 2276369979 9801276199 2330072317 1754531153 4813386473 1972730880 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 80 8151945378 4960776499 0956509879 5858548944 4589640089 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)