Factores primos conocidos de gúgolduplex - 1 con 193 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 193 digitos
Esta es una lista de factores primos conocidos de
193 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 109 0382340292 3138019914 0422913622 0160000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 132 6828091750 0442457117 0178644645 1681033836 4548116980 6952776189 7391381786 4870989617 5424832734 7045936386 0118310657 4542024141 4937840585 2329160943 0818810671 8246338560 0000000000 0000000000 0000000001 (Phil Carmody, k=151)
- 138 2400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 293 2547993606 7769431119 4695285325 9538036424 7040000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=263)
- 338 8131789017 2013562732 9000271856 7848205566 4062500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 350 7011570036 4112854003 9062500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=241)
- 354 1774862152 2339102720 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 470 7826301540 0105728768 4206740574 9812076766 5833480258 8467200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 523 3238814928 3696119551 3141679363 2647346217 7969486900 3402672943 4100602874 4164650479 4857556513 9097672037 4901555651 1648112144 9131726025 5232000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 527 7655813324 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 543 0031549258 6661498294 5213524842 5008711015 0247714986 1555863960 0072940445 4077098307 6072297990 3221130371 0937500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 635 2747104407 2525430124 1875509731 4715385437 0117187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 700 6249872969 1976013629 5472260746 8946996805 0528929767 6191399936 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=109)
- 708 5572767021 2378603822 7215472005 4443055785 7318331063 6429290157 6908478487 3876973875 8690693406 2109843597 7822266282 5371026150 3393284517 4017228800 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=119)
- 814 1631274498 7949907198 3488342336 8520933045 7968028521 5902436137 5556391927 8080000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)