Factores primos conocidos de gúgolduplex - 1 con 179 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 179 digitos
Esta es una lista de factores primos conocidos de
179 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 105312291 6685571866 9791802768 3670432318 8950954005 4911125431 0977536000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 136736175 5389411019 6361468868 1692183020 7819080041 2720751442 8831867937 7185212852 8069007691 2617508355 8413395979 1502954672 6373155252 0766854286 1938476562 5000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 138399859 7796317915 6688398455 6069963110 7272082323 5875704016 8833512922 9020689469 2773193093 2866315870 8411229369 5170592400 2453684806 8237304687 5000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=139)
- 171213495 9166743871 2854606478 0487699315 5568128877 4883579472 4037976071 0999302046 3856872400 5503886258 7755261239 1448104980 0802304000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=259)
- 175781250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 178095782 2477445876 5859602409 2249292800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=343)
- 201948391 7365790221 8540251271 2393274796 3408473879 0988922119 1406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 206414875 4391064360 4497388057 7187824671 6908490251 4530113638 2995544823 0588479636 3272630166 9779911311 7899161600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 241040706 6388485413 3129431385 1174390378 3304490674 1892529520 6400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 244698917 5499446697 5163602909 7120533338 7936596775 8624554094 8867080114 6216724057 3352085860 4757020060 5605350574 4785070419 3115234375 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 257096996 0391418663 5238558790 4707973694 6258717679 1728198169 0276345507 0958371409 5735258210 7398042410 2956021670 2520847320 5566406250 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=197)
- 282440737 4646398238 8377189636 2304687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=159)
- 355136260 0204552502 4624279764 9326621681 3242632719 9941058244 2846459816 5749760000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=201)
- 374144419 1567111470 6014331717 5368453031 9187310018 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 411376139 3303015105 3874229563 9337626245 6839664083 9496583715 2256000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 450611205 6614465497 0230353692 9827942984 3888633691 1996997137 1678152801 6520800562 2509115511 5120165708 2521360784 0905345285 5540539928 1183090568 5109288051 5454811730 2935552000 0000000001 (Phil Carmody, k=313)
- 486603531 3182030078 5601168931 7111189953 0947067284 5580894241 9166397866 0395198872 9684351550 8271276495 9560921575 2372632685 5984964698 1120000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=351)
- 585327853 1842485433 8404948058 6218682327 8621517496 8209078609 1929929757 2010287060 5377255739 4324404744 5924675495 8526374179 2896495439 8665534949 2940800000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 640949485 4920720918 9702945929 2263811609 4802285260 8119137585 1631164550 7812500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 866668474 9742561338 7519007416 3217293342 1457416969 2468785797 2458004951 4770507812 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 870400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 914270802 9592989843 8770593093 5165730717 6248221133 6279842597 2113479360 3536653391 3590742850 7995636498 4320000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=209)