Factores primos conocidos de gúgolduplex - 1 con 177 digitos
-
Alpertron
-
Teoría de números
-
Factores primos de gúgolduplex − 1 con 177 digitos
Esta es una lista de factores primos conocidos de
177 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.
Estos números tienen la forma 1 + 2k × 2m × 5n,
donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.
En la lista se pueden ver los factores primos y el valor correspondiente de k.
- 1009539 1189679503 4408569335 9375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 1060601 1337121845 5248266805 1348778173 3535380539 2605586476 3915855909 2459144335 9401983829 3923653667 4126080469 0969045033 1409296985 6741177636 6498088464 1408920288 0859375000 0000000001 (Phil Carmody, k=183)
- 1114680 4480033546 6710652134 2140055701 5149251133 4400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=781)
- 1322262 6152035006 5983488000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 1333924 8680138825 7127953774 7300084698 4696702233 4817929773 4551367771 1592534520 6272000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 1384120 3200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 1454745 3207685490 0825708019 8585001706 9553480293 8856272674 4472802142 9589520591 0451306118 4495944900 0071876710 7057064101 8533586630 4273959477 5665246118 0237878579 6463489532 4707031251 (Phil Carmody, k=329)
- 1880790 9613156600 1274997845 9555593084 5098648908 3534003441 4002730045 4676151275 6347656250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2235174 1790771484 3750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2518811 9200249361 3691146794 0056563961 8604195337 0417306133 3569566968 2941794354 1755561481 7175767664 4340017502 6176000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=429)
- 2522271 0297726976 2005890030 8949068869 3567069924 0478654118 1607604229 1006212276 6295961566 6970257285 3701525316 5933757715 4641875482 2813523241 7764573395 1000245463 7427294208 0000000001 (Phil Carmody, k=219)
- 2748779 0694400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2820134 2502669547 3533137637 4605457593 2921284794 6679407389 2181972820 8804378799 8394250562 1276769402 6343757585 8383231277 0382114254 3190248652 8000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=97)
- 3068803 6949026330 0313736534 0775874205 2031019181 6537324014 0585657590 1254341293 8239520306 5711555535 1473289562 6636958756 6571141178 0117675559 8749549461 5040000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3363975 7646142243 1748360395 4315185546 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=303)
- 3422656 6206162193 8404109865 4515200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 3663735 9812630165 8339798450 4699707031 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 4502815 5832522033 3195534463 5048367934 3807738104 1032611807 6858838918 1450038763 3601181691 8435513122 6748301633 2660131940 0650254032 3061760000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=203)
- 5404319 5528445952 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 7099848 3320134817 9162288108 2441940121 0287407648 2021218661 2129888028 0561819971 9179534723 6082757702 7589397189 3709352516 2616313044 8688269416 9671656301 9802836708 8844800000 0000000001 (Phil Carmody, k=101)
- 9098982 0001633409 3070011759 1869125352 3525362426 0744321237 2468459110 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 9893216 0589241813 6242010084 0785887601 4052539640 4847359656 2522243715 8890042612 7468681265 6042449721 7995839068 5704064557 3574054601 3722700483 9870184620 4075726716 6642708859 4796544001 (Phil Carmody, k=1)