Factores primos conocidos de gúgolduplex - 1 con 163 digitos

  1. Alpertron
  2. Teoría de números
  3. Factores primos de gúgolduplex − 1 con 163 digitos

Esta es una lista de factores primos conocidos de 163 dígitos de gúgolduplex − 1, es decir, 1010^(10^100) − 1.

Estos números tienen la forma 1 + 2k × 2m × 5n, donde 0 ≤ m ≤ 10100 y 0 ≤ m ≤ 10100.

En la lista se pueden ver los factores primos y el valor correspondiente de k.

  1. 110 6753577673 2029262348 0781912803 6499023437 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=319)
  2. 133 8044711911 8373884921 4309635890 1690358824 9600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  3. 168 0210619248 3374645825 4890576711 2046305555 8502674102 7832031250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  4. 172 9382256910 2704640000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 173 4458328342 4915806556 8330207220 3248977402 2730585125 9982655155 9786360425 0419166361 0295153078 9532550456 9344000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=121)
  6. 193 4281311383 4066795298 8160000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  7. 267 1230065510 0228522937 5723893855 1728703882 6639917630 0090357362 1238278563 5236959230 0193040737 4185196432 7655406886 5303147940 4907970449 7404403488 0588863869 1038986241 (Phil Carmody, k=19)
  8. 296 5924381543 0117416068 5692232405 4602490937 9811776031 8092622049 4259979172 4554182442 0302657945 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=91)
  9. 297 3079441506 3040000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=169)
  10. 735 5978596156 2665201200 6573032148 4081369947 7864812904 4480000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  11. 771 6728645107 1674081154 5591674197 4343783323 8269132800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  12. 782 5417277758 1239976161 2089477072 0641997879 7430421751 9419265311 9988180853 2139101651 3490330321 1748842524 3770880000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=853)
  13. 831 7731128953 6815900487 6810025557 8550680129 1220856405 7419176001 3538092587 5346207057 9036160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=669)
  14. 961 0716724182 8536009746 6111871395 0504177209 4202006275 7315224884 2859760456 7567184729 7158349692 6036376968 2148359480 7320125197 0783199603 3013376036 3960756108 0012800001 (Phil Carmody, k=7)
  15. 980 3056468913 7545626655 7706956754 1248000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=59)